

Strategic Renewable Energy Resource Assessment for the Highland Area

Report to

The Highland Council

by

Aquatera Ltd

in collaboration with NorthStar New Media and The Macaulay Institute

P091 RERA Report – Rev 3 October 2005

Aquatera Ltd Stromness Business Centre Stromness, Orkney, Scotland KW16 3AW This study was completed for:

The Highland Council Renewable Energy Working Group Glenurquhart Road INVERNESS IV3 5NX

Contact:	Mike Greaves, Head of Development & Strategy
Tel:	01463 702260
Mobile:	07971 667494
Fax:	01463 702298
Email:	mike.greaves@highland.gov.uk

This study was completed by:

Aquatera Ltd Stromness Business Centre Stromness Orkney KW16 3AW

Contact:Dr Gareth Davies, Managing DirectorTel:01856 850 088Fax:01856 850 089Email:office@aquatera.co.uk

Revision record

Revision number is indicated on the footer of every page.

Revision Number	Issue Date	Revision Details
Rev 2	Sept 2005	Draft for Committee consultation
Rev 3	Oct 2005	Draft for Public consultation

Contents

	Pag	je
Conte	nts	. i
List of	Figures	.ii
List of	Tables	iv
1	Introduction	1
י י	Description of the Methodology	1
2		י ר
2.1		2
2.2	Planning constraints (likelihood of obtaining a licence to operate)	2
2.5	Cost of developing the renewable resources	2 3
2.5	Overall resource assessment model	4
3	Resource Model Outputs	5
31		5
3.2	Offshore wind	19
3.3	Offshore wave	30
3.4	Tidal current	34
3.5	Hydro3	39
4	Collated Capacity and Power Output Results	3
4.1	Onshore wind	13
4.2	Offshore wind	18
4.3	Offshore wave	50
4.4	Tidal current	52
4.5	Coastal wave 5	55
4.6	Hydro5	55
4.7	Biomass	55
	4.7.1 Crops	56
	4.7.2 Wood fuel	56
4.8	Waste	57
4.9	Civil infrastructure	57
4.10	Utility infrastructure	58
4.11	Micro generation	58
4.12	Energy efficiency	58
4.13	Research & development 5	59
4.14	Overall combined power outputs 5	59
Apper	dices: Specific resource parameters 6	51
Appen	dix A - Onshore wind	51
Appen	dix B - Offshore wind	3
Appen	dix C - Offshore wave	35
Appen	dix D - Coastal wave	57 52
Appen	1 אוג E - I idal current	i8

List of Figures

Figure 2.1	Map illustrating the data grid over Highland Region
Figure 2.2	Openance wind encode
Figure 3.1	Onshore wind speeds
Figure 3.2	Onshore wind generation costs (excluding transmission)
Figure 3.3	Onshore wind overall constraint levels
Figure 3.4	Conshore wind productivity under an extremely high unconstrained planning regime (0 to 100% likelihood and 3p wholesale revenue)
Figure 3.5	Onshore wind productivity under an extremely unconstrained planning regime (10 to 100% likelihood and 3p wholesale revenue)7
Figure 3.6	Onshore wind productivity under a very unconstrained planning regime (20 to 100% likelihood and 3p wholesale revenue)
Figure 3.7	Onshore wind productivity under an unconstrained planning regime (30 to 100% likelihood and 3p wholesale revenue)
Figure 3.8	Onshore wind productivity under a moderately unconstrained planning regime (40 to 100% likelihood and 3p wholesale revenue) 9
Figure 3.9	Onshore wind productivity under moderate planning regime (50 to 100% likelihood and 3p wholesale revenue)
Figure 3.10	Onshore wind productivity under an extremely high unconstrained planning
Figure 3.11	Onshore wind productivity under an extremely unconstrained planning regime
Figure 3.12	Onshore wind productivity under a very unconstrained planning regime (20 to 30% likelihood and 3n wholesale revenue)
Figure 3.13	Onshore wind development under an unconstrained planning regime (30 to 40% likelihood and 3p wholesale revenue)
Figure 3.14	Onshore wind development under a moderately unconstrained planning regime (40 to 50% likelihood and 3p wholesale revenue)
Figure 3 15	Existing and proposed development areas for onshore wind scheme 12
Figure 3.16	Prospective search areas
Figure 3.17	Offshore wind speeds
Figure 3.18	Offshore wind generation costs (excluding transmission) 20
Figure 3.10	Offshore wind overall constraint levels
Figure 3.20	Offshore wind productivity under an extremely high unconstrained planning
rigule 5.20	regime (0 to 100% likelihood and 3n wholesale revenue)
Figuro 3 21	Offshore wind productivity under an extremely unconstrained planning regime
Figure 5.21	(10 to 100% likelihood and 2p wholesole revenue)
Figure 2.00	Offehere wind productivity under a yery unconstrained planning regime (20 to
Figure 3.22	015h0re wind productivity under a very unconstrained planning regime (2010
Figure 2.02	Offebere wind productivity under an unconstrained planning regime (20 to
Figure 5.25	100% likelihood and 3n wholesale revenue)
Figuro 3.24	Offshore wind productivity under a moderately unconstrained planning regime
1 igule 5.24	(10 to 100% likelihood and 3p wholesale revenue)
Eiguro 2 25	Offebore wind productivity under a moderate planning regime (50 to 100%)
Figure 5.25	likelihood and 2p wholesole revenue)
Figure 2.26	Offehere wind productivity under an extremely high uncenstrained planning
Figure 3.26	Chishore wind productivity under an extremely high unconstrained planning
Figure 3.27	Offshore wind productivity under a very unconstrained planning regime (10 to
	20% likelihood)
Figure 3.28	Offshore wind productivity under an unconstrained planning regime (20 to
-	30% likelihood and 3p wholesale revenue)
Figure 3.29	Offshore wind productivity under a moderately unconstrained planning regime (30 to 40% likelihood and 3p wholesale revenue)

Figure 3.30	Offshore productivity under a moderate planning regime (40 to 50% likeliho	od
-	and 3p wholesale revenue)	26
Figure 3.31	Prospective offshore wind areas	27
Figure 3.32	Offshore wave energy	30
Figure 3.33	Offshore wave generation costs (excluding transmission)	31
Figure 3.34	Offshore wave overall constraint levels	31
Figure 3.35	Selected offshore wave sites	32
Figure 3.36	Tidal current speeds	34
Figure 3.37	Tidal current overall constraint levels	35
Figure 3.38	Selected tidal current sites	35
Figure 3.39	Potential hydro schemes	39
Figure 3.40	Potential hydro scheme capacities	40
Figure 3.41	Hydro scheme constraint levels	40
Figure 3.42	Prospective hydro schemes under a highly constrained planning regime	41
Figure 3.43	Prospective hydro schemes under a moderately constrained planning regin	ne
U		41
Figure 3.44	Prospective hydro schemes under a lightly constrained planning regime	42
Figure 4.1	Cumulative energy production matrix for onshore wind given certain plannir	ng
C	and wholesale price scenarios	4 3
Figure 4.2	Cumulative power output for each cost and constraint combination for	
-	onshore wind	44
Figure 4.3	Average power output for each cost and constraint combination for onshore)
-	wind	45
Figure 4.4	Sub-areas of the Highlands	47
Figure 4.5	Cumulative energy production matrix for offshore wind given certain planning	ng
	and wholesale price scenarios	48
Figure 4.6	Cumulative power output for each cost and constraint combination for	
	offshore wind	49
Figure 4.7	Average power output for each cost and constraint combination for offshore)
	wind	49
Figure 4.8	Cumulative energy matrix for offshore wave	50
Figure 4.9	Cumulative power output for each cost and constraint combination for	
	offshore wave	51
Figure 4.10	Average power output for each cost and constraint combination for offshore	Э
	wave	51
Figure 4.11	Cumulative energy matrix for tidal current (Letters in subscript indicate whe	re
	tidal streams start to contribute to the energy production total, refer also to	the
	tidal stream key below)	52
Figure 4.12	Cumulative power output for each cost and constraint combination for tidal	
	current	53
Figure 4.13	Average power output for each cost and constraint combination for tidal	
	current	54
Figure 4.14	Cumulative energy matrix for coastal wave	55

List of Tables

Table 2.1	Renewable resource categories
Table 2.2	Technical limits
Table 2.3	Possible planning constraints applied in this study
Table 2.4	Cost factors 4
Table 3.1	Prospective search areas ranked according to average and absolute values for power, constraint and cost
Table 3.2	Prospective search areas ranked according to average values for power,
Table 3.3	Existing and proposed developments ranked according to average and absolute values for power, constraint and cost
Table 3.4	Existing and proposed developments ranked according to average values for power, constraint and cost
Table 3.5	Ranked table comparing existing/proposed developments and prospective search areas
Table 3.6	Prospective search areas ranked according to average and absolute values for power, constraint and cost
Table 3.7	Prospective search areas ranked according to average values for power, constraint and cost
Table 3.8	Table of outputs for offshore wave ranked by average and absolute values for power, constraint and cost
Table 3.9	Table of outputs for offshore wave ranked by average values for power, constraint and cost
Table 3.10	Table of outputs for tidal current ranked by average and absolute values for power, constraint and cost
Table 3.11	Table of outputs for tidal current ranked by average values for power, constraint and cost
Table 4.1	Power outputs from onshore wind developments in various wards of the highland area under different levels of planning constraint. (All predictions made for 6 p wholesale energy price). 46
Table 4.2	Power outputs from onshore wind developments in various sub regions of the highland area under different levels of planning constraint. (All predictions made for 6 p wholesale energy price)
Table 4.3	Tidal development key (to be used in conjunction matrix for tidal current) 52 Possible annual energy and capacities for hydro schemes in the Highland
	area
Table 4.5	Farmland areas and possible crop production
Table 4.6	Wood fuel potential 2020 56
Table 4.7	Livestock wastes and possible associated energy production 56
Table 4.8	Potential areas and figures civil infrastructure developments
Table 4.9	Possible ferry routes with the potential to generate tidal stream energy 58
Table 4.10	Lengths of power lines in the Highland region and their potential to incorporate power production technologies
Table 4.11	Potential micro wind generation under different technology types and varying levels of uptake
Table 4.12	Potential domestic energy savings in the Highland region 58
Table 4.13	Domestic energy performance indicators 59
Table 4.14	Energy performance indicators for 60 selected larger schools in the Highlands
Table 4.15	Levels of energy production (GWh) under different development scenarios. 60

1 Introduction

This resource assessment of renewable energy resources throughout the Highland Area has been commissioned by The Highland Council and completed by Aquatera Ltd. The study was undertaken during 2004. This summary report supports a comprehensive database produced on CD ROM. The summary report collates the overall outputs for the various energy sources and provides details of the input parameters and sources of information used in the study.

The CD ROM provides copies of all of the input parameters used in the resource assessment models. It also provides the geographical outputs from the models and a mechanism for applying variable filter levels to these model outputs. In addition it contains a PDF version of this summary report.

2 Description of the Methodology

The core approach in this study is to create a database of input data which is geographically distributed at a 1 km grid resolution. Models have then been established that estimate power outputs and technical constraints. These models are related to each of the various individual renewable technologies. A set of variable input parameters for the models have also been defined. The models and parameters combined are then used to generate possible development scenarios under certain sets of assumptions. The outcomes from these scenarios enable the user to understand from an overall sense and at a local level the range of potential scenarios that can arise.

An example of the grid pattern used in this study is provided below. There are around 44,000 grid squares in the study area.

Figure 2.1 Map illustrating the data grid over Highland Region

Each of the grid squares in the study area has been allocated to a sub area and ward. These classifications are used to determine area specific resource and potential energy production levels.

2.1 Resource potential

The resource potential is considered to arise from the following renewable energy sources.

Table 2.1 Renewable resource categories

Renewable resource categories			
Onshore wind	Turbines installed by land crane		
Offshore wind	Turbines installed by vessels at sea		
Offshore wave	Devices situated away from the coast, floating or on seabed		
Coastal wave	Devices attached to the coastline		
Tidal current	Energy from tidal streams		
Tidal head	Opening up channels across land barriers		
Tidal barrage	Damming of coastal embayment/firths		
Biomass	From combustion of forestry products, crops, natural harvest		
Waste	From incineration of garbage and other wastes with power generation and/or		
	heat recovery		
Digestion	Breakdown of organic materials to form methane		
Hydro	Traditional hydro schemes incorporating water storage		
Civil infrastructure	Energy fluxes associated with bridges, sea walls etc		
Utility infrastructure	Energy potential from water mains, drains, electrical distribution and		
	transmission systems		
Micro generation	Systems designed for localised embedded generation		
Energy efficiency	Passive reduction of energy demand, both domestic & industrial		
Research & development	Sub commercial schemes that are undertaken to develop technologies		

With regard to tidal head schemes no suitable areas were identified and with regard to tidal barrage schemes the tidal range in the highlands is insufficient to deliver cost effective power production. These two energy sources were therefore not considered any further

2.2 Technical limits

A variety of factors affect the technical viability of exploiting the raw resource potential. Nongeographical factors include the efficiency of a given system at extracting the available energy. The geographically distributed factors are outlined below:

Table 2.2 Technical limits

Factor	Limiting factor	
Land gradient	Very steep land may inhibit onshore turbine construction	
Land height	Elevated land will be subject to climatic conditions that can create operational difficulties	
Seabed gradient	Steep/unstable seabed may preclude developments in an area	
Sea conditions	Exposed sea areas and over falls may inhibit construction and maintenance activities	
Water depth	Some technologies are constrained to shallow water	
Vegetation/habitat type	Certain types of vegetation such as natural woodland, marshes, lochs etc will create	
	severe operational difficulties for land operations	

2.3 Planning constraints (likelihood of obtaining a licence to operate)

The likelihood of getting planning approval is influenced by a set of factors associated with the acceptability of a possible development scenario. For example large wind turbines are unlikely to get approval near particularly scenic areas or particularly sensitive wildlife populations.

Factors that are considered to be possible constraints and the categories used to classify them are outlined below.

Factor	Category		
Land			
Visibility	Visibility from dwellings Visibility from view points Visibility from Munros and Corbetts Visibility from recreation and tourism centres Visibility from West Highland way		
Designated landscapes	Built conservation areas Listed buildings Areas of Great Landscape Value National Scenic Areas Designed landscapes		
Wilderness value	Distance from roads and track	ks	
Land use & character	Montane Agricultural Water Urban Woodland	Upland Wetland Industrial Dunes	
Tourism	Visitor sites and attractions Major – developed Moderate – no development Minor – occasional use		
Recreation	Outdoor pastimes (Walking, S	Shooting, Relaxation etc	
Wildlife conservation	International designations (RAMSAR sites, SAC, SPA) National designations (NNR, SSSI) Local designations (Local Nature Reserve, RSPB reserve, SWT reserve) Other Ancient woodland Semi natural woodland Tree preservation orders		
Geological conservation	Geological SSSI		
Archaeology	Scheduled ancient monumen Recognised sites Potential sites	ts	
Dwellings	Number		
Hazardous areas	Hazardous sites map	Transco pipeline buffer	
Nuclear	Dounreay consultation areas		
Land and sea		a	
Military	Marine exercise areas Technical research sites	Bombing ranges RAF tactical flying areas	
Aviation	Airport safeguarding	ILS approaches	
l elecommunications	Line of sight microwave links	∠ories arouna aerials	
Fishing	Trawling Dredging	Creeling	
Cables	Route		
Oil & gas developments	Pipeline routes Exploration areas	Surface facilities	
Shipping	Shipping routes Anchorage areas Coastal routes	Charted routes Manoeuvring areas	
Conservation	Designated sites	Voluntary areas	
Recreation and leisure	Boating Bathing	Diving Visitor attractions	
Dredging areas	License areas		
Sand extraction	License areas		
Fish farming	License areas		

Table 2.3Possible planning constraints applied in this study

2.4 Cost of developing the renewable resources

These factors take account of the capital and operating costs associated with the various technologies. Capital costs relate to installed capacity (\pounds/kW) whilst operating costs relate more appropriately to generated power (\pounds/kWh). The main cost items associated with the various technologies are outlined below:

Table 2.4 Cost factors

Factor	Category
Soil type	Ground conditions were classified as either rock, soil or bog
Seabed type	Seabed conditions were classified as either mud, sand or rock
Distance to grid	km range from grid lines and/or grid connection points (existing sub stations)
Distance from port	Km range by road or sea from designated industrial ports – not all ports qualified as industrial.
Vehicle accessibility	Land type and distance

2.5 Overall resource assessment model

The structure of the overall project around the model is shown in Figure 2.2.

Figure 2.2 Overall schematic for the study

3 Resource Model Outputs

These maps show the base scenario outputs from the various constraint and cost models, as well as the overall combined model outputs for each energy resource.

3.1 Onshore wind

The onshore wind model was run with a universal development scenario of four 2MW turbines per km^2 , unless that square was otherwise restricted by dwellings (less than four turbines per km^2) or by other constraint factors (no turbines per km^2).

The following section shows the results for the onshore wind model, including overall generating costs per km² (Figure 3.2), overall constraints per km² (Figure 3.3), potential development areas under cumulative constraint levels (Figure 3.4 to Figure 3.9) and potential development areas at individual constraint levels (10% increments) (Figure 3.10 to Figure 3.14).

Figure 3.1 Onshore wind speeds

Figure 3.2 Onshore wind generation costs (excluding transmission)

Figure 3.4 Onshore wind productivity under an extremely high unconstrained planning regime (0 to 100% likelihood and 3p wholesale revenue)

Figure 3.5 Onshore wind productivity under an extremely unconstrained planning regime (10 to 100% likelihood and 3p wholesale revenue)

Figure 3.7 Onshore wind productivity under an unconstrained planning regime (30 to 100% likelihood and 3p wholesale revenue)

Figure 3.8 Onshore wind productivity under a moderately unconstrained planning regime (40 to 100% likelihood and 3p wholesale revenue)

Figure 3.9 Onshore wind productivity under moderate planning regime (50 to 100% likelihood and 3p wholesale revenue)

Figure 3.10 Onshore wind productivity under an extremely high unconstrained planning regime (0 to 10% likelihood and 3p wholesale revenue)

Figure 3.11 Onshore wind productivity under an extremely unconstrained planning regime (10 to 20% likelihood and 3p wholesale revenue)

Figure 3.13 Onshore wind development under an unconstrained planning regime (30 to 40% likelihood and 3p wholesale revenue)

Figure 3.14 Onshore wind development under a moderately unconstrained planning regime (40 to 50% likelihood and 3p wholesale revenue)

Figure 3.16 shows the prospective development areas identified by the RERA model. The table to the left of Figure 3.16 can be used to identify the areas by name and can also be used in conjunction with Table 3.1 to Table 3.5.

Area	Number
Cape Wrath	1
Strathy	2
John O'Groats	3
Lybster	4
Langwell	5
Auchentoul	6
Helmsdale	7
Brora	8
Golspie	9
Strath Brora	10
Ben Armine Forest	11
Strath Fleet	12
Dornoch Firth North	13
Dornoch Firth South	14
Beinn Tharsuinn	15
Strath Glass	16
Duirinish	17
Sleat	18
Glenaffric	19
Monadliath Mountains West	20
Monadliath Mountains East	21
Ardnamurchan	22
Morvern West	23
Morvern East	24
West Skye	25
Trotternish	26
Tungadal	27

Figure 3.16	Prospective	search	areas
-------------	-------------	--------	-------

Table 3.1 and Table 3.2 rank the prospective development areas according to average and total values for power, constraint and cost (Table 3.1) and average values for power, constraint and cost (Table 3.2). Sites were also ranked by total values as well as average values to give an indication of the pros associated with large developments. For example a large development with a poor average will have a greater overall value for the site than a small development site with a higher average. This helps show that to obtain the equivalent power from one large development several small developments would be required. These could be widespread, resulting in greater costs and possible greater environmental impact. Table 3.3 and Table 3.4 show the results for existing and proposed wind farm developments based on the same criteria as Table 3.1 and Table 3.2. Table 3.5 shows the average rankings for a mixture of modelled developments and existing/proposed developments.

	Number of technically feasible km	Average power	Average	Total power	Total power	Average	Average constraint	Total	Total constraint	Average	Average cost	
Area	squares	(GWh)	power rank	(GWh)	rank	constraint	rank	constraint	rank	cost	rank	Total rank
Morvern West	80	24.0	7	1920.0	19	0.61	1	48.8	3	0.3	12	42
Sleat	125	20.3	19	2541.3	13	0.74	3	92.5	11	0.2	5	51
Helmsdale	122	21.0	16	2600.3	12	0.80	6	97.6	14	0.2	5	53
Ardnamurchan	94	23.2	10	2184.6	16	0.77	4	72.38	7	0.4	18	55
Dornoch Firth South	118	18.6	23	2189.6	15	0.80	6	94.4	12	0.2	5	61
Duirinish	93	26.3	4	2442.9	14	0.95	21	88.35	10	0.3	12	61
Golspie	51	22.4	12	1144.9	27	0.93	20	47.43	2	0.1	1	62
Tungadal	62	23.8	8	1476.1	24	0.84	14	52.08	4	0.3	12	62
Beinn Tharsuinn	75	23.4	9	1751.9	23	0.83	13	62.25	6	0.3	12	63
Strath Fleet	177	19.3	21	3410.8	11	0.81	8	143.37	20	0.2	5	65
Cape Wrath	142	28.5	1	4241.6	6	0.95	21	134.9	19	0.4	18	65
Brora	81	23.0	11	1866.4	20	0.95	21	76.95	9	0.2	5	66
Strath Brora	287	20.5	18	5893.8	3	0.81	8	232.47	25	0.3	12	66
Skye West	69	20.6	17	1422.0	25	0.85	16	58.65	5	0.2	5	68
Strathy	211	20.1	20	4235.8	7	0.84	14	177.24	22	0.2	5	68
Lybster	232	18.7	22	4338.5	5	0.89	17	206.48	24	0.1	1	69
Monadliath Mountains East	192	21.9	13	4197.0	8	0.78	5	149.76	21	0.5	22	69
Morvern East	192	21.2	14	4079.4	9	0.70	2	134.4	18	0.7	27	70
Langwell	131	25.9	5	3595.8	10	0.95	21	124.45	17	0.4	18	71
Monadliath Mountains West	338	21.1	15	7133.8	1	0.82	11	277.16	26	0.4	18	71
Dornoch Firth North	120	14.8	27	1776.2	22	0.82	11	98.4	15	0.1	1	76
John O'Groats	121	15.9	25	1922.0	18	0.89	17	107.69	16	0.1	1	77
Trotternish	46	28.4	2	1306.0	26	0.96	26	44.16	1	0.5	22	77
Auchentoul	79	27.3	3	2132.9	17	0.97	27	76.63	8	0.5	22	77
Ben Armine Forest	202	24.7	6	4990.3	4	0.95	21	191.9	23	0.6	25	79
Glen Glass	120	15.0	26	1798.3	21	0.81	8	97.2	13	0.3	12	80
Balmacaan Forest	380	17.7	24	6735.5	2	0.89	17	338.2	27	0.6	25	95

Table 3.1 Prospective search areas ranked according to average and absolute values for power, constraint and cost

	Number of technically	Average power	Average power	Average	Average	Average	Average	Total
Area	feasible km squares	(GWh)	rank	constraint	constraint rank	cost	cost rank	rank
Morvern West	80	24.0	7	0.61	1	0.3	12	20
Sleat	125	20.3	19	0.74	3	0.2	5	27
Helmsdale	122	21.0	16	0.80	6	0.2	5	27
Ardnamurchan	94	23.2	10	0.77	4	0.4	18	32
Golspie	51	22.4	12	0.93	20	0.1	1	33
Dornoch Firth South	118	18.6	23	0.80	6	0.2	5	34
Tungadal	62	23.8	8	0.84	14	0.3	12	34
Beinn Tharsuinn	75	23.4	9	0.83	13	0.3	12	34
Strath Fleet	177	19.3	21	0.81	8	0.2	5	34
Duirinish	93	26.3	4	0.95	21	0.3	12	37
Brora	81	23.0	11	0.95	21	0.2	5	37
Strath Brora	287	20.5	18	0.81	8	0.3	12	38
Skye West	69	20.6	17	0.85	16	0.2	5	38
Strathy	211	20.1	20	0.84	14	0.2	5	39
Dornoch Firth North	120	14.8	27	0.82	11	0.1	1	39
Cape Wrath	142	28.5	1	0.95	21	0.4	18	40
Lybster	232	18.7	22	0.89	17	0.1	1	40
Monadliath Mountains East	192	21.9	13	0.78	5	0.5	22	40
Morvern East	192	21.2	14	0.70	2	0.7	27	43
John O'Groats	121	15.9	25	0.89	17	0.1	1	43
Langwell	131	25.9	5	0.95	21	0.4	18	44
Monadliath Mountains West	338	21.1	15	0.82	11	0.4	18	44
Glen Glass	120	15.0	26	0.81	8	0.3	12	46
Trotternish	46	28.4	2	0.96	26	0.5	22	50
Auchentoul	79	27.3	3	0.97	27	0.5	22	52
Ben Armine Forest	202	24.7	6	0.95	21	0.6	25	52
Balmacaan Forest	380	17.7	24	0.89	17	0.6	25	66

Table 3.2 Prospective search areas ranked according to average values for power, constraint and cost

Area	Number of technically feasible km squares	Average power (GWh)	Average power rank	Total power (GWh)	Total power rank	Average constraint	Average constraint rank	Total constraint	Total constraint rank	Average cost	Average cost rank	Total rank
Kilbraur	8	26.2	12	210.0	11	0.79	7	6.34	21	0.1	2	53
Farr	8	26.5	10	211.7	10	0.85	16	6.77	23	0.1	2	61
Hill of Lieurary	1	21.4	18	21.4	35	0.83	13	0.83	1	0.1	2	69
Strathy North	14	28.4	6	397.2	4	0.80	8	11.22	34	0.3	18	70
Flex Hill	1	27.2	7	27.2	32	0.92	27	0.92	3	0.1	2	71
Lochluichart	12	26.3	11	315.7	6	0.88	21	10.61	33	0.1	2	73
Achany	9	24.5	14	220.3	8	0.80	8	7.24	25	0.3	18	73
Strathy South	12	33.5	3	401.6	3	0.82	11	9.86	30	0.4	27	74
Achairn	1	32.2	4	32.2	30	0.92	27	0.92	3	0.2	12	76
Novar II	3	21.3	21	63.9	26	0.76	4	2.28	11	0.3	18	80
Forss II Extension	1	27.2	7	27.2	32	1.00	35	1.00	5	0.1	2	81
Novar	5	33.8	2	135.2	16	0.88	21	4.41	16	0.4	27	82
Burn of Whilk	3	16.8	32	50.3	29	0.68	1	2.04	9	0.2	12	83
South Shebster	1	21.4	18	21.4	35	0.86	19	0.86	2	0.2	12	86
Broubster Forest	13	15.5	34	186.3	15	0.78	5	10.12	32	0.1	2	88
Scoolary	9	24.3	15	218.9	9	0.88	21	7.96	27	0.3	18	90
Beinn Tharsuinn	4	21.1	23	84.3	23	0.82	11	3.28	15	0.3	18	90
Forss	1	27.2	7	27.2	32	1.00	35	1.00	5	0.2	12	91
Ben Aketil	10	20.6	25	206.3	12	0.84	15	8.44	28	0.2	12	92
Causeymire	3	21.4	18	64.1	25	0.71	2	2.12	10	1.0	37	92
Dunmaglass	30	25.7	13	771.9	2	0.85	16	25.58	36	0.4	27	94
Spittal Hill	8	23.5	17	187.9	14	0.90	24	7.19	24	0.3	18	97
Cambusmore	7	18.5	29	129.8	17	0.83	13	5.80	20	0.3	18	97
Glenkirk	11	19.5	27	194.8	13	0.92	27	10.07	31	0.1	2	100
Ackron	3	21.3	21	63.9	26	0.91	25	2.73	12	0.3	18	102
Stroupster	3	36.4	1	109.1	21	0.96	33	2.88	13	0.6	34	102
Buolfruich	1	20.4	26	20.4	37	1.00	35	1.00	5	0.0	1	104
Gordonbush	7	17.1	31	120.0	19	0.93	30	6.48	22	0.1	2	104
South of Glen Moriston	9	30.2	5	271.6	7	0.94	31	8.49	29	0.5	32	104
Strath Brora (West)	53	23.7	16	1256.8	1	0.85	16	45.00	37	0.6	34	104
Corriemoillie	6	19.3	28	116.0	20	0.80	8	4.80	17	0.5	32	105
Dunbeath	20	17.9	30	358.1	5	0.73	3	14.68	35	0.6	34	107
Melvich	2	16.0	33	32.1	31	0.86	19	1.71	8	0.3	18	109
Camster	4	13.9	35	55.8	28	0.78	5	3.12	14	0.4	27	109
Baillie Hill	6	20.8	24	125.1	18	0.91	25	5.44	18	0.4	27	112
Edinbane	8	11.7	36	93.2	22	0.98	34	7.86	26	0.1	2	120
Fairburn	6	11.7	36	69.9	24	0.95	32	5.68	19	0.2	12	123

Table 3.3 Existing and proposed developments ranked according to average and absolute values for power, constraint and cost

Area	Number of technically feasible km squares	Average power (GWh)	Average power rank	Average constraint	Average constraint rank	Average cost	Average cost rank	Total rank
Kilbraur	8	26.2	12	0.79	7	0.1	2	21.0
Farr	8	26.5	10	0.85	16	0.1	2	28.0
Strathy North	14	28.4	6	0.80	8	0.3	18	32.0
Hill of Lieurary	1	21.4	18	0.83	13	0.1	2	33.0
Lochluichart	12	26.3	11	0.88	21	0.1	2	34.0
Flex Hill	1	27.2	7	0.92	27	0.1	2	36.0
Achany	9	24.5	14	0.80	8	0.3	18	40.0
Strathy South	12	33.5	3	0.82	11	0.4	27	41.0
Broubster Forest	13	15.5	34	0.78	5	0.1	2	41.0
Achairn	1	32.2	4	0.92	27	0.2	12	43.0
Novar II	3	21.3	21	0.76	4	0.3	18	43.0
Forss II Extension	1	27.2	7	1.00	35	0.1	2	44.0
Burn of Whilk	3	16.8	32	0.68	1	0.2	12	45.0
South Shebster	1	21.4	18	0.86	19	0.2	12	49.0
Novar	5	33.8	2	0.88	21	0.4	27	50.0
Beinn Tharsuinn	4	21.1	23	0.82	11	0.3	18	52.0
Ben Aketil	10	20.6	25	0.84	15	0.2	12	52.0
Scoolary	9	24.3	15	0.88	21	0.3	18	54.0
Forss	1	27.2	7	1.00	35	0.2	12	54.0
Dunmaglass	30	25.7	13	0.85	16	0.4	27	56.0
Glenkirk	11	19.5	27	0.92	27	0.1	2	56.0
Causeymire	3	21.4	18	0.71	2	1.0	37	57.0
Spittal Hill	8	23.5	17	0.90	24	0.3	18	59.0
Cambusmore	7	18.5	29	0.83	13	0.3	18	60.0
Buolfruich	1	20.4	26	1.00	35	0.0	1	62.0
Gordonbush	7	17.1	31	0.93	30	0.1	2	63.0
Ackron	3	21.3	21	0.91	25	0.3	18	64.0
Strath Brora (West)	53	23.7	16	0.85	16	0.6	34	66.0
Dunbeath	20	17.9	30	0.73	3	0.6	34	67.0
Camster	4	13.9	35	0.78	5	0.4	27	67.0
Stroupster	3	36.4	1	0.96	33	0.6	34	68.0
South of Glen Moriston	9	30.2	5	0.94	31	0.5	32	68.0
Corriemoillie	6	19.3	28	0.80	8	0.5	32	68.0
Melvich	2	16.0	33	0.86	19	0.3	18	70.0
Edinbane	8	11.7	36	0.98	34	0.1	2	72.0
Baillie Hill	6	20.8	24	0.91	25	0.4	27	76.0
Fairburn	6	11.7	36	0.95	32	0.2	12	80.0

Table 3.4 Existing and proposed developments ranked according to average values for power, constraint and cost

Table 3.5Ranked table comparing existing/proposed developments and
prospective search areas

A	Number of technically	Average	Average	Average	Average	Average	Average	Total
Area	feasible km squares	power (GWh)	power rank	constraint	constraint rank	cost	cost rank	rank
Kilbraur	8	26.2	15	0.79	12	0.1	2	29.0
Farr	8	33.1	4	0.85	29	0.1	2	35.0
Lochluichart	12	26.3	13	0.88	34	0.1	2	49.0
Morvern West RERA	80	24.0	21	0.61	1	0.3	28	50.0
Strathy North	14	28.4	11	0.80	13	0.3	28	52.0
Hill of Lieurary	1	21.4	29	0.83	24	0.1	2	55.0
Achany	9	24.5	19	0.80	13	0.3	28	60.0
Sleat RERA	125	20.3	42	0.74	6	0.2	16	64.0
Achairn	1	32.2	5	0.92	43	0.2	16	64.0
Strathy South	12	33.5	3	0.82	20	0.4	41	64.0
Edinbane	8	30.7	6	0.98	58	0.1	2	66.0
Broubster Forest	13	15.5	55	0.78	9	0.1	2	66.0
Novar II	122	21.0	37	0.80	7	0.2	10	67.0
Burp of Whilk	3	16.8	53	0.70	2	0.3	20	71.0
Ardnamurchan RERA	94	23.2	25	0.00	8	0.2	41	74.0
Golspie RERA	51	22.4	27	0.93	46	0.4	2	75.0
Beinn Tharsuinn RERA	75	23.4	24	0.83	24	0.3	28	76.0
South Shebster	1	21.4	29	0.86	32	0.2	16	77.0
Melvich	2	25.0	17	0.86	32	0.3	28	77.0
Novar	5	33.8	2	0.88	34	0.4	41	77.0
Dornoch Firth North RERA	120	14.8	56	0.82	20	0.1	2	78.0
Dornoch Firth South RERA	118	18.6	49	0.80	13	0.2	16	78.0
Dunmaglass	30	29.7	8	0.85	29	0.4	41	78.0
Strath Fleet RERA	177	19.3	46	0.81	18	0.2	16	80.0
Ben Aketil	10	20.6	39	0.84	27	0.2	16	82.0
Scoolary	9	24.3	20	0.88	34	0.3	28	82.0
Beinn Tharsuinn	4	21.1	35	0.82	20	0.3	28	83.0
Strathy RERA	211	20.1	43	0.84	27	0.2	16	86.0
Strath Brora RERA	287	20.5	40	0.81	18	0.3	28	86.0
Lybster RERA	232	18.7	48	0.89	37	0.1	2	87.0
REPA	102	21.0	28	0.78	٩	0.5	51	88.0
Glenkirk	11	19.5	45	0.92	43	0.3	2	90.0
Duirinish RERA	93	26.3	13	0.95	49	0.1	28	90.0
Ben Wyvis RFRA	81	23.0	26	0.95	49	0.2	16	91.0
Spittal Hill	8	23.5	23	0.90	40	0.3	28	91.0
John O'Groats RERA	121	15.9	54	0.89	37	0.1	2	93.0
Causeymire	3	21.4	29	0.71	4	1.0	61	94.0
Monadliath Mountains West RERA	338	21.1	35	0.82	20	0.4	41	96.0
Morvern East RERA	192	21.2	34	0.70	3	0.7	60	97.0
Brora RERA	142	28.5	9	0.95	49	0.4	41	99.0
Gordonbush	7	17.1	52	0.93	46	0.1	2	100.0
Cape Wrath RERA	142	28.5	10	0.95	49	0.4	41	100.0
Buolfruich	1	20.4	41	1.00	59	0.0	1	101.0
Ackron	3	21.3	32	0.91	41	0.3	28	101.0
Cambusmore	7	18.5	50	0.83	24	0.3	28	102.0
Flex Hill	1	14.0	58	0.92	43	0.1	2	103.0
Dunbeath	20	19.9	44	0.73	5	0.6	55	104.0
Langwell RERA	131	25.9	16	0.95	49	0.4	41	106.0
South of Glen Moriston	9	30.2	/	0.94	48	0.5	51	106.0
Strath Brora (West)	53	23.7	<u> </u>	0.85	29	0.6	55 41	106.0
Corriemoillio	4	10.9	59	0.78	12	0.4	41 51	110.0
Stroupster	3	36 /	40	0.00	56	0.5	55	112.0
Baillie Hill	6	20.8	38	0.90	41	0.0	41	120.0
Auchentoul RERA	79	27.3	12	0.97	57	0.5	51	120.0
Fairburn	6	14.7	57	0.95	49	0.2	16	122.0
Ben Armine Forest RERA	202	24.7	18	0.95	49	0.6	55	122.0
Forss II Extension	1	0.0	61	1.00	60	0.1	2	123.0
Forss	1	7.0	60	1.00	60	0.2	16	136.0
Glenaffric RERA	380	17.7	51	0.89	37	0.6	55	143.0

3.2 Offshore wind

The offshore wind model was run with a universal development scenario of four 5MW turbines per km^2 , unless that square was otherwise restricted by dwellings (less than four turbines per km^2) or by other constraint factors (no turbines per km^2).

The following section shows the results for the onshore wind model, including overall generating costs per km² (Figure 3.18), overall constraints per km² (Figure 3.19), potential development areas under cumulative constraint levels (Figure 3.20 to Figure 3.25) and potential development areas at individual constraint levels (10% increments) (Figure 3.26 to Figure 3.30).

Figure 3.17 Offshore wind speeds

Figure 3.18 Offshore wind generation costs (excluding transmission)

Figure 3.20 Offshore wind productivity under an extremely high unconstrained planning regime (0 to 100% likelihood and 3p wholesale revenue)

Figure 3.21 Offshore wind productivity under an extremely unconstrained planning regime (10 to 100% likelihood and 3p wholesale revenue)

Figure 3.22 Offshore wind productivity under a very unconstrained planning regime (20 to 100% likelihood and 3p wholesale revenue)

Figure 3.23 Offshore wind productivity under an unconstrained planning regime (30 to 100% likelihood and 3p wholesale revenue)

Figure 3.24 Offshore wind productivity under a moderately unconstrained planning regime (40 to 100% likelihood and 3p wholesale revenue)

Figure 3.25 Offshore wind productivity under a moderate planning regime (50 to 100% likelihood and 3p wholesale revenue)

Figure 3.26 Offshore wind productivity under an extremely high unconstrained planning regime (0 to 10% likelihood)

Figure 3.27 Offshore wind productivity under a very unconstrained planning regime (10 to 20% likelihood)

Figure 3.28 Offshore wind productivity under an unconstrained planning regime (20 to 30% likelihood and 3p wholesale revenue)

Figure 3.29 Offshore wind productivity under a moderately unconstrained planning regime (30 to 40% likelihood and 3p wholesale revenue)

Figure 3.30 Offshore productivity under a moderate planning regime (40 to 50% likelihood and 3p wholesale revenue)

Figure 3.31 shows the prospective development areas identified by the RERA model. The table to the left of Figure 3.31 can be used to identify the areas by name and can also be used in conjunction with Table 3.6 and Table 3.7.

Table 3.6 and Table 3.7 rank the prospective development areas according to average and total values for power, constraint and cost (Table 3.6) and average values for power, constraint and cost (Table 3.7). Sites were also ranked by total values as well as average values to give an indication of the pros associated with large developments. For example a large development with a poor average will have a greater overall value for the site than a small development site with a higher average. This helps show that to obtain the equivalent power from one large development several small developments would be required. These could be widespread, resulting in greater costs and possible greater environmental impact.

Area	Number
Cape Wrath	1
Whiten Head	2
Coomb Island	3
Melvich	4
Sandy Riddle	5
Clyth Ness	6
Dunbeath Bay	7
Smith Bank	8
Tarbat Ledge	9
Ardnamurchan	10
Hawes Bank	11
Sea of the	12
Hebrides	
Sleat	13
SW Skye	14
Moonen Bay	15
Waternish	16
Peninsula	
Stoerhead	17

Figure 3.31 Prospective offshore wind areas

Area	Number of technically feasible km squares	Average power (GWh)	Average power rank	Total power (GWh)	Total power rank	Average constraint	Average constraint rank	Total constraint	Total constraint rank	Average cost	Average cost rank	Total rank
Smith Bank	31	87.1	6	2699.3	9	0.32	1	9.92	1	1.1	2	19
Hawes Bank	18	90.7	4	1632.2	11	0.79	7	14.22	4	1.1	2	28
Sea of the Hebrides	141	96.0	2	13537.4	1	0.79	7	111.39	17	1.1	2	29
SW Skye	45	752	1	3383.5	6	0.69	3	31.05	11	1.2	9	30
Moonen Bay	44	74.3	11	3269.3	7	0.61	2	26.84	9	1.1	2	31
Cape Wrath	17	93.4	3	1587.5	12	0.87	13	14.79	5	1.1	2	35
Stoerhead	16	88.2	5	1411.1	16	0.69	3	11.04	2	1.2	9	35
Sandy Riddle	14	82.1	8	1149.8	17	0.80	9	11.20	3	1.1	2	39
Waternish Peninsula	30	77.2	10	2314.8	10	0.83	11	24.90	8	0.9	1	40
Ardnamurchan	61	86.9	7	5303.3	3	0.93	17	56.73	14	1.1	2	43
Dunbeath Bay	119	60.5	15	7198.4	2	0.73	5	86.87	16	1.3	13	51
Whiten Head	20	77.5	9	1550.9	14	0.88	14	17.60	7	1.2	9	53
Melvich	42	68.7	14	2886.9	8	0.75	6	31.50	12	1.3	13	53
Tarbat Ledge	60	73.3	12	4399.8	4	0.91	16	54.60	13	1.3	13	58
Clyth Ness	87	48.3	16	4203.8	5	0.85	12	73.95	15	1.3	13	61
Coomb Island	20	73.1	13	1462.2	15	0.81	10	16.20	6	1.4	17	61
Sleat	34	46.3	17	1573.1	13	0.88	14	29.92	10	1.2	9	63

Table 3.6 Prospective search areas ranked according to average and absolute values for power, constraint and cost

Area	Number of technically feasible km squares	Average power (GWh)	Average power rank	Average constraint	Average constraint rank	Average cost	Average cost rank	Total rank
Smith Bank	31	87.1	6	0.32	1	1.1	2	9
Sea of the Hebrides	141	96.0	2	0.79	7	1.1	2	11
Hawes Bank	18	90.7	4	0.79	7	1.1	2	13
SW Skye	45	752	1	0.69	3	1.2	9	13
Moonen Bay	44	74.3	11	0.61	2	1.1	2	15
Stoerhead	16	88.2	5	0.69	3	1.2	9	17
Cape Wrath	17	93.4	3	0.87	13	1.1	2	18
Sandy Riddle	14	82.1	8	0.80	9	1.1	2	19
Waternish Peninsula	30	77.2	10	0.83	11	0.9	1	22
Ardnamurchan	61	86.9	7	0.93	17	1.1	2	26
Whiten Head	20	77.5	9	0.88	14	1.2	9	32
Dunbeath Bay	119	60.5	15	0.73	5	1.3	13	33
Melvich	42	68.7	14	0.75	6	1.3	13	33
Coomb Island	20	73.1	13	0.81	10	1.4	17	40
Sleat	34	46.3	17	0.88	14	1.2	9	40
Tarbat Ledge	60	73.3	12	0.91	16	1.3	13	41
Clyth Ness	87	48.3	16	0.85	12	1.3	13	41

Table 3.7 Prospective search areas ranked according to average values for power, constraint and cost

3.3 Offshore wave

The offshore wave model was run with a universal development scenario of 40 750kW Pelamis devices per km², unless that square was otherwise restricted by constraint factors (no devices per km²).

The following section shows the results for the offshore wave model, including overall generating costs per km² (Figure 3.33), overall constraints per km² (Figure 3.34) and selected sites for offshore wave generation (Figure 3.35). Due to the nature of offshore wave energy and the Pelamis device, it is not possible to place Pelamis devices throughout the Highland area as it is for onshore and offshore wind turbines. Instead it was decided to place three strings of Pelamis farms at strategic points to utilise the full power of the wave front. The result can be seen in Figure 3.35.

Figure 3.32 Offshore wave energy

Figure 3.33 Offshore wave generation costs (excluding transmission)

Pure Land Research and Research

Figure 3.35 Selected offshore wave sites

Table 3.8 and Table 3.9 rank the prospective development areas according to average and total values for power, constraint and cost (Table 3.8) and average values for power, constraint and cost (Table 3.9). Sites were also ranked by total values as well as average values to give an indication of the pros associated with large developments. For example a large development with a poor average will have a greater overall value for the site than a small development site with a higher average. This helps show that to obtain the equivalent power from one large development several small developments would be required. These could be widespread, resulting in greater costs and possible greater environmental impact.

Area	Number of technically feasible km	Average power (GWh)	Average power rank	Total power (GWh)	Total power rank	Average	Average constraint rank	Total constraint	Total constraint rank	Average	Average cost rank	Total rank
Cape Wrath West	5	45.2	1	225.8	1	0.12	2	0.60	2	12.5	1	7
Sea of the	<u> </u>	10.2		22010	•	0112		0.00		12.0		•
Hebrides	5	45.2	1	225.8	1	0.92	3	4.60	3	12.5	1	9
Cape Wrath East	5	38.1	3	190.5	3	0.10	1	0.50	1	14.9	3	11

Table 3.8 Table of outputs for offshore wave ranked by average and absolute values for power, constraint and cost

Table 3.9 Table of outputs for offshore wave ranked by average values for power, constraint and cost

Area	Number of technically feasible km squares	Average power (GWh)	Average power rank	Average constraint	Average constraint rank	Average cost	Average cost rank	Total rank
Cape Wrath West	5	45.2	1	0.12	2	12.5	1	4
Sea of the Hebrides	5	45.2	1	0.92	3	12.5	1	5
Cape Wrath East	5	38.1	3	0.10	1	14.9	3	7

3.4 Tidal current

The tidal current model was run to show the required number of tidal current devices required to extract the energy from the tide.

The following section shows the results for the tidal current model, including overall constraint levels per km² (Figure 3.37) and selected sites for tidal current generation (Figure 3.38). Due to the nature of the energy in tidal currents, it is not possible to place devices throughout the Highland area as it is for onshore and offshore wind turbines. Instead it was decided to place varying numbers of devices in km squares that best utilised the energy. Devices were places strategically to prevent the energy lost through one development being used in another. The result can be seen in Figure 3.38.

Figure 3.36 Tidal current speeds

Figure 3.37 Tidal current overall constraint levels

Figure 3.38 Selected tidal current sites

Table 3.10 and Table 3.11 rank the prospective development areas according to average and total values for power, constraint and cost (Table 3.10) and average values for power, constraint and cost (Table 3.11). Sites were also ranked by total values as well as average values to give an indication of the pros associated with large developments. For example a large development with a poor average will have a greater overall value for the site than a small development site with a higher average. This helps show that to obtain the equivalent power from one large development several small developments would be required. These could be widespread, resulting in greater costs and possible greater environmental impact.

Area	Number of technically feasible km squares	Average power (GWh)	Average power rank	Total power (GWh)	Total power rank	Average constraint	Average constraint rank	Total constraint	Total constraint rank	Average cost	Average cost rank	Total rank
Kyle Rhea	1	185.5	6	185.5	8	0.37	1	0.37	1	1.7	3	19
Sound of Mull (East)	1	640.4	3	640.4	4	0.75	6	0.75	3	5.5	5	21
John O'Groats	1	1298.3	2	1298.3	3	0.80	10	0.80	6	1.6	2	23
North Stroma	2	1547	1	3093.9	2	0.78	9	1.56	12	0.9	1	25
The Minch	10	333.4	5	3333.6	1	0.72	5	7.20	14	5.5	5	30
Loch Leven	1	185.5	6	185.5	8	0.88	12	0.88	8	1.7	3	37
Sound of Mull (West)	1	514.5	4	514.5	6	0.95	15	0.95	10	5.5	5	40
Corran Narrows	1	98.5	11	98.5	12	0.76	7	0.76	4	5.6	8	42
Inverness	1	27.4	14	27.4	14	0.54	2	0.54	2	5.8	12	44
Cape Wrath	4	157.8	9	631.2	5	0.67	3	2.68	14	9.45	13	44
Loch Eil	1	54.7	12	54.7	13	0.76	7	0.76	4	5.7	10	46
Chanonry Point	2	54.7	12	109.5	11	0.69	4	1.38	11	5.7	10	48
Sound of the Hebrides (Rum)	1	182.7	8	182.7	10	0.87	11	0.87	7	13.2	14	50
Sound of the Hebrides (Canna)	2	128.6	10	257.3	7	0.91	14	1.82	13	5.6	8	52
Pentland Firth	1	22.8	15	22.8	15	0.88	12	0.88	8	13.7	15	65

Table 3.10 Table of outputs for tidal current ranked by average and absolute values for power, constraint and cost

Area	Number of technically feasible km squares	Average power (GWh)	Average power rank	Average constraint	Average constraint rank	Average cost	Average cost rank	Total rank
Kyle Rhea	1	185.5	6	0.37	1	1.7	3	10
North Stroma	2	1547	1	0.78	9	0.9	1	11
Sound of Mull (East)	1	640.4	3	0.75	6	5.5	5	14
John O'Groats	1	1298.3	2	0.80	10	1.6	2	14
The Minch	10	333.4	5	0.72	5	5.5	5	15
Loch Leven	1	185.5	6	0.88	12	1.7	3	21
Sound of Mull (West)	1	514.5	4	0.95	15	5.5	5	24
Cape Wrath	4	157.8	9	0.67	3	9.45	13	25
Corran Narrows	1	98.5	11	0.76	7	5.6	8	26
Chanonry Point	2	54.7	12	0.69	4	5.7	10	26
Inverness	1	27.4	14	0.54	2	5.8	12	28
Loch Eil	1	54.7	12	0.76	7	5.7	10	29
Sound of the Hebrides (Canna)	2	128.6	10	0.91	14	5.6	8	32
Sound of the Hebrides (Rum)	1	182.7	8	0.87	11	13.2	14	33
Pentland Firth	1	22.8	15	0.88	12	13.7	15	42

Table 3.11 Table of outputs for tidal current ranked by average values for power, constraint and cost

3.5 Hydro

Hydro schemes throughout the Highland region were not modelled, in the same way that wind, wave and tide were. Instead the RERA model was only used to display potential locations and not to interrogate the model to locate the most suitable locations.

Figure 3.39 Potential hydro schemes

Figure 3.40 Potential hydro scheme capacities

Vertical developments for hydro schemes @ 80%

Figure 3.42 Prospective hydro schemes under a highly constrained planning regime

Figure 3.43 Prospective hydro schemes under a moderately constrained planning regime

Figure 3.44 Prospective hydro schemes under a lightly constrained planning regime

4 Collated Capacity and Power Output Results

4.1 Onshore wind

The matrix below presents the build up of possible onshore wind capacity as planning pressures decrease and whole sale energy prices increase. Generally there should be a trend of lowest capacity and power levels in the bottom left quadrant and highest capacity and power outputs in the top right quadrant.

		Generating cost (pence kWh ⁻¹) excluding transmission cost											
		0 to 1	0 to 2	0 to 3	0 to 4	0 to 5	0 to 6	0 to 7	0 to 8	0 to 9	0 to 10		
	10 to 100 %	102.44	106.62	106.98	107.06	107.09	107.10	107.10	107.10	107.10	107.10		
		13704	22674	29854	31856	34072	35804	36406	36842	37170	37650		
	20 to	46.69	48.22	48.38	48.43	48.44	48.44	48.44	48.45	48.45	48.45		
o	100 /0	6152	10120	13136	14212	15274	15964	16252	16446	16646	16918		
nissi	30 to	27.40	28.56	28.68	28.71	28.71	28.71	28.71	28.71	28.71	28.71		
peri	100 /0	4016	6288	8004	8560	9084	9468	9708	9838	9990	10150		
ning	40 to	15.21	15.41	15.46	15.48	15.48	15.49	15.49	15.49	15.49	15.49		
olanı	100 /0	2340	3588	4502	4750	4982	5156	5268	5324	5380	5428		
ing p	50 to	3.59	3.63	3.66	3.66	3.66	3.66	3.66	3.66	3.66	3.66		
otain	100 %	668	902	1104	1168	1232	1292	1316	1340	1356	1380		
of ok	60 to	3.00	3.04	3.06	3.06	3.06	3.06	3.06	3.06	3.06	3.06		
ility	100 /8	572	770	932	964	1012	1056	1080	1104	1104	1112		
bab	70 to	2.55	2.58	2.61	2.61	2.61	2.61	2.61	2.61	2.61	2.61		
e pro	100 %	480	654	784	816	856	892	916	940	940	948		
Itage	80 to	1.59	1.62	1.64	1.64	1.64	1.64	1.64	1.64	1.64	1.64		
rcer	100 /8	244	378	484	508	524	540	564	588	588	588		
Ре	90 to	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60		
	100 /8	86	166	182	198	198	198	198	198	198	198		
	100.%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	100 %	0	0	0	0	0	0	0	0	0	0		

Figure 4.1	Cumulative energy production matrix for onshore wind given certain	1
	planning and wholesale price scenarios	

Total available power for scenario (TW hrs yr ⁻¹) Installed capacity (MW)

The results show that under the most highly constrained conditions from a planning perspective all development would be curtailed. In fact planning considerations dominate the capacity levels that could be anticipated down to the 50% threshold. Below this level cost factors begin to have more of an impact.

The maximum installed capacity, at today's wholesale price of 6p per unit, is suggested to be 36,000 MW. However the maximum likely capacity, at the 80% threshold is 16,000 MW. This reduces to 1,300 MW under a mid way planning strategy and only 540 MW under a strict planning framework. Further analysis has shown the distribution of possible developments within the different sub-areas and wards that make up the highland area. These results are shown in Table 4.1 and Table 4.2 overleaf.

Figure 4.2 and Figure 4.3 show the relationships between generating cost, planning approval probability and power output. Figure 4.2 shows that onshore wind developments have a low generating cost (less than 1 pence per kWh). It also shows that overall the greatest amount of generating potential from onshore wind lies in areas that have a 0 to 10% chance of obtaining planning approval and that there is very little potential above a 40% chance of obtaining planning approval.

Figure 4.2 Cumulative power output for each cost and constraint combination for onshore wind

Figure 4.3 again shows that the majority of onshore wind developments have generating cost of less than 1 pence per kW hour. Potential generating power is fairly constant throughout the area with no particular constraint of land having a significantly higher potential power output.

Figure 4.3 Average power output for each cost and constraint combination for onshore wind

Table 4.1Power outputs from onshore wind developments in various wards of the
highland area under different levels of planning constraint. (All
predictions made for 6 p wholesale energy price).

14/	E	Eneray output (GWh)
Ward	Highly	Moderately	Lightly
	constrained	constrained	constrained
Caithness North West	0	0	339
Thurso West Thurso Central	0	0	0
Thurso East	0	0	0
Caithness Central	0	92	1151
Caithness North East	0	27	300
Wick West	0	0	0
Pulteneytown	0	0	0
Caithness South East	16	178	1301
Tongue & Farr	21	74	1328
Sutherland Central	112	112	2130
Golspie & Rogart	0	65	991
Brora Dornooh Eirth	182	219	3778
Lochbroom	0	0	0
Alness & Ardross	123	218	1278
Tain West	0	0	27
Tain East Seaboard	0	0	0
Invergordon	0	0	0
Rosskeen & Saltburn	0	119	261
Gairloch	0	0	83
Ferindonald	0	4 26	194
Strathpeffer & Strathconon	36	36	381
Dingwall South	0	0	0
Dingwall North Muir of Ord	0	11	38
Conon & Maryburgh	0	0	0
Knockbain & Killearnan	0	0	20
Black Isle North	0	0	139
Snizort & Trotternish	27	27	793
Skye West	109	136	1580
Portree	0	0	204
Skye Central Kyle & Sleat	34	0 175	740 1868
Kinlochshiel	0	0	251
Beauly & Strathglass	0	72	1301
Kirkhill	0	0	43
Muirtown	0	0	0
Inverness Central	0	0	0
Culloden	0	0	0
Loch Ness West	0	0	2488
Inverness West	0	0	0
Ballifeary	0	0	0
Hilton	0	0	0
Crown	0	0	0
Raigmore	0	0	0
LOCN NESS East	0	0	519
Inshes	0	0	0
Drumossie	0	279	4153
Westhill & Smithton	0	0	0
Nairn Alltan	0	0	0
Nairn Ninian	0	0	16
Nairn Cawdor	0	11	76
Nairn Auldearn Badenoch West	10	46	905
Badenoch East	0	37	1056
Strathspey South	0	0	310
Strathspey North East	0	19	1406
Mallaig & Small Isles	0	0	5
Kilmallie & Invergarry	0	5	382
Claggan & Glen Spean	0	10	768
Ardnamurchan & Morvern	802	1219	7193
Fort William North	0	0	0
Fort William South	0	0	15
Glencoe	25	100	649
TOTAL	1642	3020	48374

Table 4.2Power outputs from onshore wind developments in various sub regions
of the highland area under different levels of planning constraint. (All
predictions made for 6 p wholesale energy price).

	I	Energy output (GWh)
Sub region	Highly constrained	Moderately constrained	Lightly constrained
1 Badenoch and Strathspey	10	164	4779
2 Caithness	16	296	3143
3 Inverness	0	352	8530
4 Lochaber	827	1332	9013
5 Nairn	0	57	998
6 Ross and Cromarty	159	414	4371
7 Skye and Lochalsh	170	338	5436
8 Sutherland	461	701	12109
Total	1643	3654	48379

Figure 4.4 Sub-areas of the Highlands

4.2 Offshore wind

The matrix below presents the build up of possible offshore wind capacity as planning pressures decrease and whole sale energy prices increase. Generally there should be a trend of lowest capacity and power levels in the bottom left quadrant and highest capacity and power outputs in the top right quadrant.

			Generating cost (pence kWh ⁻¹) excluding transmission cost										
'		0 to 1	0 to 2	0 to 3	0 to 4	0 to 5	0 to 6	0 to 7	0 to 8	0 to 9	0 to 10		
	10 to 100 %	1.53	59.35	62.20	62.42	62.45	62.52	62.55	62.55	62.55	62.55		
	100 /0	340	5980	9400	11660	14020	14200	16740	18440	18520	18900		
	20 to	0.96	31.07	32.72	32.72	32.74	32.78	32.78	32.78	32.78	32.78		
ion	100 /8	140	3040	5620	6700	7600	7700	8620	9560	9600	9720		
niss	30 to	0.29	14.82	15.40	15.40	15.42	15.42	15.42	15.42	15.42	15.42		
peri	100 /0	0	1440	2820	3320	3700	3760	3900	4280	4280	4300		
ning	40 to	0.00	7.44	7.89	7.89	7.91	7.91	7.91	7.91	7.91	7.91		
plan	100 /0	0	820	1220	1700	1980	2020	2040	2220	2220	2220		
ing I	50 to	0.00	5.31	5.35	5.35	5.37	5.37	5.37	5.37	5.37	5.37		
otain	100 /0	0	800	1100	1120	1380	1400	1420	1420	1420	1420		
of ot	60 to	0.00	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50		
ility	100 /0	0	500	520	540	600	600	600	600	600	600		
bab	70 to	0.00	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07	2.07		
e pro	100 /8	0	480	480	480	480	480	480	480	480	480		
ntag	80 to	0.00	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07		
srcei	100 /0	0	20	20	20	20	20	20	20	20	20		
Pe	90 to 100 %	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	100 /0	0	0	0	0	0	0	0	0	0	0		
	100.%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	100 %	0	0	0	0	0	0	0	0	0	0		

Figure 4.5 Cumulative energy production matrix for offshore wind given certain planning and wholesale price scenarios

Total available power for scenario (TW hrs yr ⁻¹) Installed capacity (MW)

The results show that for offshore wind both planning constraints and costs can have a strong limiting influence. Offshore wind only becomes viable above 1p per unit for wholesale prices and planning consent for a significant scale of development only kicks in at the less than 80% likelihood level.

Figure 4.6 and Figure 4.7 show the relationships between generating cost, planning approval probability and power output. Figure 4.6 shows that offshore wind developments have a low generating cost (less than 3 pence per kWh). It also shows that overall the greatest amount of generating potential from offshore wind lies in areas that have a 0 to 10% chance of obtaining planning approval and that there is very little potential above a 40% chance of obtaining planning approval.

Figure 4.6 Cumulative power output for each cost and constraint combination for offshore wind

Figure 4.7 again shows that the majority of offshore wind developments have generating cost of less than 3 pence per kW hour. Potential generating power is fairly constant throughout the area with no particular constraint of sea having a significantly higher potential power output.

4.3 Offshore wave

The potential development pattern for offshore wave technologies is complicated by fact that each device has the potential to interfere with the energy regime of devices next to it to a far greater degree than is the case for wind. This relates to the fact that with wave energy the devices are for the most part going to exploit the most energetic part of the wave, whereas for wind turbines work only in the bottom boundary layer of the atmosphere. The build up of capacity has therefore been expressed in terms of development area available in square kilometres. It can be seen from the results that even in the most highly constrained circumstances there is considered to be potential to develop wave farms over 42 km2 of sea area. However, in relation to the cost model the cheapest generation price anticipated in the models it would suggest that wave energy may be uneconomic at current energy prices in the area. It is interesting to note that in similar studies in Orkney and Shetland more competitive costs were achieved due mainly to the higher levels of wave energy.

			Generating cost (pence kWh ⁻¹) excluding transmission cost										
		0 to 2	0 to 4	0 to 6	0 to 8	0 to 10	0 to 12	0 to 14	0 to 16	0 to 18	0 to 20		
	10 to 100 %	0	0	0	0	0	0	1116	1116	3331	3344		
ning	20 to 100 %	0	0	0	0	0	0	536	536	2576	2582		
g plar	30 to 100 %	0	0	0	0	0	0	365	365	1627	1627		
otainin	40 to 100 %	0	0	0	0	0	0	364	364	1431	1431		
/ of ob ssion	50 to 100 %	0	0	0	0	0	0	364	364	1128	1128		
ability	60 to 100 %	0	0	0	0	0	0	364	364	1078	1078		
e prob	70 to 100 %	0	0	0	0	0	0	364	364	912	912		
entag	80 to 100 %	0	0	0	0	0	0	323	323	821	821		
Perc	90 to 100 %	0	0	0	0	0	0	282	282	704	704		
	100 %	0	0	0	0	0	0	42	42	42	42		

Figure 4.8 Cumulative energy matrix for offshore wave

Total area available for development (km²)

Figure 4.9 and Figure 4.10 show the relationships between generating cost, planning approval probability and power output. Figure 4.9 shows that offshore wave developments have higher generating costs than wind developments (greater than 12 pence per kWh). It also shows that potential power developments are scattered throughout.

Figure 4.9 Cumulative power output for each cost and constraint combination for offshore wave

Figure 4.10 again shows that the majority of offshore wave developments have generating cost of greater than 12 pence per kW hour. Potential generating power is fairly constant throughout the area with no particular constraint of sea having a significantly higher potential power output.

Figure 4.10 Average power output for each cost and constraint combination for offshore wave

4.4 Tidal current

The matrix below presents the results for possible tidal current developments in the highland area. In this case a slightly different approach was used. Each individual tidal stream was considered on its own merits and its potential established. The matrix therefore shows how the various tidal stream area could come on stream given certain cost and constraint factors.

				Generati	ng cost (pe	ence kWh	¹) excludin	g transmis	sion cost		
		0 to 1	0 to 2	0 to 3	0 to 4	0 to 5	0 to 6	0 to 7	0 to 8	0 to 9	0 to 10
	10 to	2.50	4.76	4.76	4.76	4.76	9.18	9.18	9.18	9.18	9.18
	100 %	207	607 _g	607	607	607	3539 _h	3539	3539	3539	3539
L	20 to	2.50	4.58	4.58	4.58	4.58	8.58	8.58	8.58	8.58	8.58
ssic	100 %	207 _d	571 _e	571	571	571	3230 _f	3230	3230	3230	3230
ermi	30 to	0.00	0.19	0.19	0.19	0.19	0.32	0.32	0.32	0.32	0.32
g pe	100 %	0	36	36	36	36	127 _c	127	127	127	127
nnin	40 to	0.00	0.19	0.19	0.19	0.19	0.21	0.21	0.21	0.21	0.21
plaı	100 %	0	36	36	36	36	55 _b	55	55	55	55
ing	50 to	0.00	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
otair	100 %	0	36	36	36	36	36	36	36	36	36
of ot	60 to	0.00	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
lity o	100%	0	36 _a	36	36	36	36	36	36	36	36
abil	70 to	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
orok	100 %	0	0	0	0	0	0	0	0	0	0
I abi	80 to	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ente	100 %	0	0	0	0	0	0	0	0	0	0
erci	90 to	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Δ.	100 %	0	0	0	0	0	0	0	0	0	0
	100%	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	10070	0	0	0	0	0	0	0	0	0	0

Figure 4.11 Cumulative energy matrix for tidal current (Letters in subscript indicate where tidal streams start to contribute to the energy production total, refer also to the tidal stream key below)

Total available power for scenario (TW hrs yr ⁻¹) Installed capacity (units)

Table 4.3Tidal development key (to be used in conjunction matrix for tidal current)

Letter referred to in table	Name of Development
A	Kyle Rhea
В	Inverness
С	Chanonry Point (Moray Firth)
d	Pentland Firth
е	North Stroma (Pentland Firth), John o' Groats
f	The Minch 1 to 9, Loch Eil, Corran Narrows, Sound of Mull 2
g	Loch Leven
h	The Minch 10, Sea of the Hebrides 1

The results show that the optimal tidal stream in the highland area in terms of cost and constraint is Kyle Rhea. This is primarily due to the fast currents and low shipping levels that prevail in the area.

Figure 4.12 and Figure 4.13 show the relationships between generating cost, planning approval probability and power output. Figure 4.12 shows that tidal current developments generally have low generating costs. It also shows that potential power developments are mainly in high constraint (low planning approval probability) areas scattered throughout.

Figure 4.13 again shows that the majority of tidal current developments have generating costs of less than 2 pence per kW hour. Potential generating power is again limited to the high constraint areas.

Figure 4.13 Average power output for each cost and constraint combination for tidal current

4.5 Coastal wave

The matrix below shows the pattern of capacity build up for coastal wave developments. The scale of capacity for this technology is somewhat lower than for the other marine technologies and results are presented in GWh rather than TWh. It can be seen from the results that coastal energy schemes are predicted to be viable at current energy prices. It can also be seen that there is a predicted gradual build up in capacity as the threshold for planning approval is lowered.

				Generatin	g cost (pe	¹) excluding transmission cost					
		0 to 1	0 to 2	0 to 3	0 to 4	0 to 5	0 to 6	0 to 7	0 to 8	0 to 9	0 to 10
	10 to 100 %	0	0	0	0	2.9	5.9	35.7	56	62.8	69.6
c		0	0	0	0	2	4	24	40	46	52
sio	20 to 100 %	0	0	0	0	2.9	5.9	35.7	50.0	56.8	63.7
mis		0	0	0	0	2	4	24	36	42	48
per	30 to 100 %	0	0	0	0	2.9	5.9	26.7	35.8	42.7	49.5
ing		0	0	0	0	2	4	18	26	32	38
ann	40 to 100 %	0	0	0	0	2.9	5.9	20.8	27.6	32.2	36.7
l pla		0	0	0	0	2	4	14	20	24	28
Jing	50 to 100 %	0	0	0	0	2.9	5.9	17.8	24.6	29.2	33.7
otaiı		0	0	0	0	2	4	12	18	22	26
f ok	60 to 100 %	0	0	0	0	2.9	2.9	14.8	19.4	21.7	23.9
ty o		0	0	0	0	2	2	10	14	16	18
ilid	70 to 100 %	0	0	0	0	2.9	2.9	11.9	14.1	14.1	16.4
obe		0	0	0	0	2	2	8	10	10	12
e pr	80 to 100 %	0	0	0	0	0	0	0	2.2	2.2	4.5
age		0	0	0	0	0	0	0	2	2	4
ent	90 to 100 %	0	0	0	0	0	0	0	0	0	0
erc		0	0	0	0	0	0	0	0	0	0
<u>ц</u>	100 %	0	0	0	0	0	0	0	0	0	0
		0	0	0	0	0	0	0	0	0	0

Figure 4.14	Cumulative energy matrix for coastal wave
-------------	---

Total available power for scenario (GW hrs yr ⁻¹) Installed capacity (MW)

4.6 Hydro

A number of new hydro schemes are being planned for the area. The capacity and possible power outputs from these schemes under differing constraint thresholds are shown below

Table 4.4Possible annual energy and capacities for hydro schemes in the
Highland area

	Highly constrained	Moderately constrained	Lightly constrained
Annual Energy (GWh)	36.7	64.3	224.3
Capacity (MW)	8.1	14.1	49.0

4.7 Biomass

The capacity for biomass production within the Highland area has been assessed on a different basis to the previous energy sources. The tables below present the key factors that have been used to develop an estimate for biomass related energy production. No cost factors have been established for this resource. Estimates have been made separately for biomass crops and for bio-digestion of slurries etc.

4.7.1 Crops

Details for crop production are provided below.

Anticipated production of cultivated crops

Poplar/willow	= 500 - 1000 tonnes per km ²
Straw	= 500 tonnes per km ²
Generic crop production	= 500 tonnes per km^2
Energy output from biomass crops	= 1 kg biomass crop produces 1 kWh of energy

Table 4.5Farmland areas and possible crop production

Category	Highlands
Arable / cultivated land	999 km²
Grassland	2493 km²
Commercial woodland	1583 km²
Total area for growing crops	3492 km²
Potential crop production	1746000 tonnes
Lower acceptability threshold area for growing biomass crops 50% of total	1746 km ²
High acceptability threshold areas for growing crops 10 % of arable	99.9 km ²
Lower acceptability crop production	873000 tonnes
High acceptability crop production	49950 tonnes
Maximum feasible production	1746 GWh
Lower acceptability energy output	873 GWh
High acceptability energy output	50 GWh

4.7.2 Wood fuel

Anticipated figures are shown below

Table 4.6Wood fuel potential 2020

Forestry District	Oven dried tonnes	GWh
Dornoch	188,270	790.734
Inverness	270,943	1,137.961
Fort Augustus	170,884	717.713
Lochaber	136,726	574.249
Lorne	211,235	887.187
Total	978,058	4,107.844

4.7.3 Bio-digestion

Details for bio-digestion from slurry waste are provided below.

Table 4.7 Livestock wastes and possible associated energy production

	Holdings	Number	No/Holding	Volume Manure Litres/day	% Total Solids	Biogas Yield m3/tonne	No of animals to produce 1t/day	tonnes/day	tonnes/year	Energy Value of gas MJ/m3	Electricity MWh*	Heat MWh*
Dairy cattle	239	5002	20.93	55	12	25	30	166	30,012	25	1,594	1,876
Beef cattle	2071	90586	43.74	24	12	25	30	3,019	543,516	23	26,564	31,252
Other cattle (6 mnth - 1yr)	795	15164	19.07	19	8.7	20	40	379	68,238	23	2,668	3,139
Other cattle (under 6 mnth)	1447	33634	23.24	19	8.7	20	40	840	151,353	23	5,918	6,962
Bulls	958	2262	2.36	24	12	25	30	75	13,572	23	663	780
Total cattle	2114	146648	69.37						806,691		37,408	44,009
Sheep	3213	1156810	360.04								0	0

Pigs	99	24707	249.57	4	9.5	26	275	89	16,171	24	858	1,009
Poultry	974	244479	251.01	0.9	20	90	12,500	19	3,520	27	727	855
Overall total											76,400	89,882
10%											7,600	
20%											15,000	
50%											38,000	

4.8 Waste

Household and commercial wastes can be used in a number of ways to generate energy. Some 150,000 tonnes of waste are produced from these sources annually. Planned waste management strategies suggest that 30,000 tonnes could be organic waste suitable for biodigestion, leaving perhaps 120,000 tonnes for incineration.

The Shetland district heating plant outputs 20-25 GWh of energy for a waste input of 17,500 tonnes annually. With 120,000 tonnes available energy from domestic and commercial waste in the Highland area could be in the range of 140 GWh.

4.9 Civil infrastructure

The possibility of using existing civil infrastructure as a base for renewables developments has often been suggested as an opportunity. The estimates below identify preliminary power output levels for three types of renewable technology. The first are small 20 kW wind turbines that could perhaps be fixed to or erected near existing structures such as bridges. The second are small scale tidal turbines that could be attached to bridge supports. The third is wave power generators attached to breakwaters.

Description	Energy type	Resource level	Capacity	Capacity factors	Power production GWh
Ardersier works	Wind	7-8 m/s	500 m	20kW/50 m, @40%	0.7
Kessock bridge	Tidal stream	4 kts	2 supports	10kW/10m if>4kts	1.39
Cromorty bridge	Tidal stream	3 kts	30 supports	10kW/10m if>4kts	0
Cromarty bridge	Small wind	5-7 m/s	1000m long	20kW/50 m, @25%	0.9
Darnach Bridge	Tidal stream,	3 kts	2 supports	10kW/10m if>4kts	0
Domoch Blidge	Small wind	5-7 m/s	800m long	20kW/50 m, @25%	0.7
Long pier into Cromarty	Tidal stream	2 kts	10 supports	10kW/10m if>4kts	0
Firth	Small wind	5-7 m/s	800m long	20kW/50 m, @25%	0.7
Helmsdale harbour	Wave	4 kW/m	100m long	40% availability, 40% conversion	0.6
Wick south pier	Wave	8.5 kW/m	200m length	X8700x0.4x0.4	2.4
Lybster pier	Wave	8.5 kW/m	50m length	40% availability, 40% conversion	0.6
Scrabster pier	Wave	8.5 kW/m	400m length	40% availability, 40% conversion	4,7
Kylosku Bridgo	Tidal stream	2 kts	0 supports	0	0
Kylesku blidge	Small wind	5-7 m/s	100m long	20kW/50 m, @25%	0.09
Skup bridge miner span	Tidal stream,	4 kts	200m length	10kW/10m if>4kts	0.7
Skye blidge millor span	Small wind	5-7 m/s	200m length	20kW/50 m, @25%	0.2
Skye bridge main span	Tidal stream	4 kts	300m	10kW/10m if>4kts	1.04
Mallaig harbour wall	Coastal wave	4 kW/m	300m length	40% availability, 40% conversion	1.4
Ballachulish Bridge	Tidal stream	6 kts	0 supports	10kW/10m if>4kts	0.7
White corries ski centre	Wind	9-10 m/s	1 km	20kW/50 m, @50%	1.7
Blackwater reservoir dam	Wind	5-7 m/s	500 m long	20kW/50 m, @25%	0.4
Anoch More ski centre	Wind	9-10 m/s	1 km	20kW/50 m, @50%	1.7
Overall total					26.92
Cautious (10%)					2.7
Moderate (20%)					5.4
Ambitious (50%)					13.5

 Table 4.8
 Potential areas and figures civil infrastructure developments

Other options for utilising infrastructure for energy production relate to investing in bridges of barrages to replace ferry services and including power generation systems within the new structures. The potential energy available is outline where appropriate in Table 4.10.

Ferry replacement	Options	Speed	Available energy	
Tobermory/Bunavulin	Tidal bridge/ barrage	2 kts	Stream too slow	
Corran narrows	Tidal bridge/ barrage	5 kts	30 GWh	
Kyle Rhea	Tidal bridge/ barrage	6 kts	27 GWh	
Rassay sound	Tidal bridge/ barrage	3 kts	Stream too slow	
Pentland Firth crossings	Tidal bridge/ barrage	7 kts	4000 GWh	

Table 4.9 Possible ferry routes with the potential to generate tidal stream energy

4.10 Utility infrastructure

There are also possibilities of using existing utility infrastructure to generate power. Small turbines could be fixed to telegraph poles and larger turbines may be able to be incorporated into electricity pylons. Estimates of possible energy output are given below.

Table 4.10 Lengths of power lines in the Highland region and their potential to incorporate power production technologies

Powerline category	Length	Unit size	Units per km	Capacity (MW)	Capacity factor	Output (GWh)
11 kV	5333 km	1 kW	15	80	25	208
33 kV	2198 km	1 kW	10	22	25	48
132 kV	1229 km	200 kW	5	1230	30	3,210
Overall technical limit						3,466
Highly constrained (10%)						350
Moderately constrained (20%)						700
Lightly constrained (40%)						1,400

4.11 Micro generation

There are a number of micro energy generation units available now, particularly for wind and hydro. Such devices are easily incorporated into a domestic energy supply and their capacity potential has been based upon the percentage uptake by householders. The values are based on the figure of 90,000 dwellings in the Highland area.

Table 4.11Potential micro wind generation under different technology types and
varying levels of uptake

Turbine capacity	1% uptake	5% uptake	10% uptake		
0.5kW	0.979 GWhrs	4.89 GWhrs	9.79 GWhrs		
0.5KW	450kW	2250kW	4500kW		
1 kW	1.96 GWhrs	9.79 GWhrs	19.6 GWhrs		
IKVV	900kW	4500kW	9000kW		

4.12 Energy efficiency

As with micro generation, energy efficiency has been assumed to operate at a per household basis in terms of the percentage saving on energy bills.

Table 4.12 Potential domestic energy savings in the Highland region

	5% savings	10% savings	20% savings
Potential energy savings (GWhrs)	134.0	268.1	536.1

The above values are based on the figure of 90,000 dwellings in the Highland region and the annual energy use of detached properties shown in Table 4.13.

Table 4.13 Domestic energy performance indicators

	Fossil fuel use due to space heating and domestic hot water (kWh/dwelling)	Electricity use ¹ (kWh/dwelling)
Detached	25,875	3,910
Semi-detached	19,210	3,145
Terraced	16,929	2,916
Purpose built flats	9,086	1,947
Converted flats	10,140	2,340
Not self contained ²	5,070	1,170
Other household		
spaces not self contained ²	5,070	1,170

Notes: ¹ includes lights, appliances and electric cooking

² 'Not self contained' and 'Other household spaces not self contained' have been assumed to consume half as much energy as one 'Converted flat'

An indication of the energy savings that could be achieved from larger community facilities can be seen from the figures for large schools in the Highland area presented below.

Table 4.14	Energy performance	indicators	for (60	selected	larger	schools	in	the
	Highlands								

	Fossil fuel use due to space heating and domestic hot water* (GWh)	Electricity use (GWh)*
Total	57.0	8.22
5% saving	2.85	0.411
10% saving	5.70	0.822
20% saving	11.4	1.64

* The UK potential for community heating with combined heat & power (Carbon Trust)

4.13 Research & development

As well as commercial production of energy there is also potential for research and development projects to provide important generation capacity. In adjacent areas such as Orkney where there are wind wave and soon tidal test facilities, research and development activities have provided important input to overall renewables development. In the Highland areas the Beatrice offshore wind scheme is starting in an experimental phase. Other part funded development projects are being, and will be developed, in the area. These developments could perhaps reach 20MW in total capacity with a power output of around 52,200 GWh.

4.14 Overall combined power outputs

The table below collates all of the results for each of the individual energy sources under each development scenario.

Resource type	Hiahly	Moderately	Liahtlv
	constrained	constrained	constrained
Onshore wind	1,644	3,655	48,378
Offshore wind	65	5,350	32,716
Offshore wave	0	0	0
Coastal wave	0	3	3
Tidal stream	0	190	8,580
Tidal head	0	0	0
Tidal barrage	0	0	0
Biomass (crops)	50	879	1746
Biomass (wood fuel)	1027	2054	3081
Biomass (slurry)	7.6	15	38
Waste	40	60	100
Hydro	36.7	64.3	224.3
Civil infrastructure	2.7	5.4	13.5
Utility infrastructure	350	700	1400
Micro generation	1.96	9.79	19.6
Energy efficiency	134	268	536
(saving)			
Research & development	13	26	52
Overall total	3,371.96	13,279.49	96,887.40
Existing wind (inc approved)	713	713	713
Existing hydro (capacity MW)	1,800	1,800	1,800

Table 4.15 Levels of energy production (GWh) under different development scenarios

It can be seen from these results that the wind related resources are likely to dominate highland area energy production under any of the possible development scenarios. Offshore wind holds particularly good development potential under both moderately and lightly constrained scenarios.

Appendices: Specific resource parameters

The following sub sections detail the factors that were applied to each of the resource types

Appendix A - Onshore wind

Constraints

Raster	Subset	Default	Comments
	1	0.9	Each km ² was scored depending on the number of Munros & Corbetts seeing the square. Three distance
	2	0.7	bands were also introduced with the closest distance band scoring greatest.
Visibility from Munros &	3	0.5	
Corbetts	4	0.4	(Source: Macaulay Institute)
	5	0.3	
	6	0.2	
	1	0.1	Fook long approved depending on the number of dwellings coping the square. Three distance hands were
	1	0.0	also introduced with the closest distance band secting graatest
	2	0.9	also initioduced with the closest distance band scoring greatest.
	3	0.0	(Source: Macaulay Institute)
	5	0.6	
Visibility from dwellings	6	0.5	
	7	0.4	
	8	0.3	
	9	0.2	
	10	0.1	
	11	0	
	1	0.8	Each km ² was scored depending on the number of tourism & recreation centres seeing a point. Two distances
	2	0.7	were also introduced with the closest distance band scoring greatest.
Visibility from tourism &	3	0.5	(Source: Macaulay Institute)
recreation centres	4	0.3	
	5	0.2	
	4	0.1	Each km ² was seared depending on the number of km ² points along the Meat Highland Mey searce a point
	2	0.9	Three distance bands were also introduced with the closest distance band scoring greatest
	2	0.7	Theo distance pands were also introduced with the closest distance pand scotting greatest.
Visibility from The West	4	0.3	(Source: Macaulay Institute)
Highland Way	5	0.3	
	6	0.2	
	7	0.1	
	5 km	0.2	Concentric bands of up to 5km, 5 to 10km and 10 to 15km were plotted. Any squares falling in these bands
Visibility from designated	10 km	0.4	were assigned the relevant values.
viewpoints	15 km	0.6	(Source: Macaulay Institute)
	All development	0	Airport exclusion data was used to constrain development in various areas around the two major airports in the
A	All exceeding 10.7m	0.7	Highlands. Any developments that exceeded the heights listed for that square were prohibited. The 30km buffer is the recommended exclusion for turbine developments due to radar interference.
	All exceeding 15.2m	0.7	(Source: Highlands Council GIS)
Allport exclusion zones	All exceeding 45.7m	0.7	
	All exceeding 91.4m	0.7	
	30km buffer	0.8	
Telecommunications	Mast	1	Locations of telecommunication masts and microwave links. (Source Highlands Council)
	Microwave link	0	
International Biological	Ramsar	0.2	Locations of Internationally recognized conservation areas.
Conservation	SPA	0.2	(Source: Highlands Council GIS)
	SAC	0.2	
National Biological	SSSI	0.3	Locations of Inationally recognized conservation areas.
Conservation	NNK National Park	0.3	
	Local Natura	0.3	Locations of locally designated conservation areas
	Reserve	0.5	Lucations of lucally designated conservation areas.
Local Biological	RSPB	0.5	(Source: SWT, RSPB, SNH, Macaulay Institute)
Conservation	SWT	0.5	
	Private Nature	0.5	
	Reserve	0.5	
Onshore wildlife outside	Montane	0.2	Areas which are likely to have special wildlife value, but which lie outside the existing designations listed
designated sites	Moorland	0.4	above.
	Semi-natural woodland	0.2	(Source: Macaulay Institute)
	Commercial	0.8	
	Wetland	0.2	
	Grassland	0.7	
	Arable / Cultivated	0.9	
	Coastal	0.2	
	Loch and freshwater	0.2	
	Urban Quarrice and	1	
	Airports	0.9	
	Cliffs	0.3	

	Recreational land	0.9	
	2 to 5 km from track	0.5	Classification of remoteness developed by SNH, which takes account of the distance from a road or track. (Source: SNH, Macaulay Institute)
Remoteness	5 to 8 km from track	0.4	
	> 8 km from track	0.2	
Geological Conservation	Geological conservation	0.8	Locations of geological SSSIs (Source: Highlands Council GIS)
	NSA	0.2	The distribution of various levels of designated areas that may be protected from development due to their
Landscape conservation	Designated viewpoints	0.2	scenic appeal. (Source: Highlands Council GIS)
	AGLV	0.2	
	Designed landscape	0.2	
	World Heritage	0	Locations of designated archaeological sites
Archaeological conservation	World Heritage Buffer	0.1	(Source: Highlands Council GIS, RCAHMS)
	Scheduled site	0.5	
Film and prestige locations	Film	0.7	Distribution of existing filming locations and prestige resort locations. (Source: relevant web sites)
· ···· =··	Prestige	0.1	
	Bombing	0.1	Distribution of military exercise and training areas.
MoD Training areas	Torpedo & gunnery	0.1	(Source: Navigational charts and Macaulay Institute)
	Tactical flying	0.4	
Aquaculture	Aquaculture	1	Locations of all fin and shell fish farms. (Source: Crown Estate)
Cables	Cables	1	Locations of submarine cables. (Source: Admiralty charts and Kingfisher charts)
Oil & Gas	Pipeline	0.8	Locations of oil & gas pipelines. (Source: DTI)
	3 km	0	Distribution of classified hazardous areas around the Highlands.
Hazardous areas	5 km	0	(Source: Highlands Council GIS)
	8 km	0	

Technical

reennear		
Category	Sub category	Defaults
Turbine Specifications	Rated Power (MW)	2

Costs

Type of cost	Category	Sub category	Defaults	Comments
CAPEX	Non geographic	Total Estimate	£387,000	Capital costs not affected by any geographic variables.
	Turbine towers	Class I (£ per unit)	£1090,000	Cost of individual towers.
		Class II (£ per unit)	£1024,600	
		Class III (£ per unit)	£893,800	
	Foundations	Wet bed (£ per unit)	£150,000	Cost of building foundations for each turbine
		Dry bed (£ per unit)	£100,000	depending on soil type.
		Rock (£ per unit)	£70,000	
		Loch (£ per unit)	£500,000	
		Built up area (£ per unit)	£50,000	
	Cabling to GSP	Poled (£ per km)	0	Cost of laying cable between site and national
		Buried (£ per km)	£17,000	grid.
		Estimated % poled	0	
		Estimated % buried	100	
OPEX	OPEX	% of total CAPEX	1.8	
	Operating conditions multiplication factor	Extreme	1.75	Factor to be applied to base operating costs
		Severe	1.5	depending on operating conditions.
		Adverse	1.25	
		Acceptable	1	
	Land fees	% of wholesales	2	
	Selling price	p/kWh	1.2	
	Capital Recovery Factor	Number of years	20	
		Rate of Return	8	

Appendix B - Offshore wind

\sim		• •
(:or	netra	ainte
001	IULIC	

Raster	Subset	Default	Comments	
	1	0.9		
	2	0.7	Fach km ² was scored depending on the number of Munros & Corbetts seeing the square. Three distance	
Visibility from Munros &	3	0.5	bands were also introduced with the closest distance band scoring greatest.	
Corbetts	4	0.4		
	5	0.3	(Source: Macaulay Institute)	
	6	0.2		
	1	0.1		
	1	1		
	3	0.8		
	4	0.7		
	5	0.6	Each km ² was scored depending on the number of dwellings seeing the square. Three distance bands were	
Visibility from dwellings	6	0.5	also introduced with the closest distance band scoring greatest.	
	7	0.4	(Source: Macaulay Institute)	
	8	0.3		
	9	0.2		
	10	0.1		
	11	0		
	1	0.8		
Visibility from tourism &	2	0.7	Each km ⁻ was scored depending on the number of tourism & recreation centres seeing a point. Two distances were also introduced with the cleast distance band seoring gradientst.	
recreation centres	3	0.5	were also introduced with the closest distance band sconing greatest.	
	5	0.3	(Source: Macaulay Institute)	
	6	0.2		
	1	0.9		
	2	0.7		
	3	0.5	Each km ⁻ was scored depending on the number of km ⁻ points along the West Highland Way seeing a point.	
Visibility from The West	4	0.4	Three distance bands were also introduced with the closest distance band scoring greatest.	
ngnanu way	5	0.3	(Source: Macaulay Institute)	
	6	0.2		
	7	0.1		
	5 km	0.2	Concentric bands of up to 5km, 5 to 10km and 10 to 15km were plotted. Any squares falling in these bands	
Visibility from designated	10 km	0.4	were assigned the relevant values.	
viewpoints	15 km	0.6	(Source: Measulay Institute)	
			(Source, macaulay institute)	
Airport exclusion zones	All sea development	0	Airport exclusion data was used to constrain development in various areas around the two major airports in the Highlands. Any developments that exceeded the heights listed for that square were prohibited. The 30km buffer is the recommended exclusion for turbine developments due to radar interference.	
	30km buffer	0.8	(Source: Highlands Council GIS)	
T 1 1 1	Mast	1		
lelecommunications	Microwave link	0	Locations of telecommunication masts and microwave links. (Source Highlands Council)	
International Biological Conservation	SAC	0.2	Locations of Internationally recognized conservation areas. (Source: Highlands Council GIS)	
Local Biological			Locations of locally designated conservation areas.	
Conservation	MCA	0.5	(Source: SWT, RSPB, SNH, Macaulay Institute)	
Offshore wildlife outside	High	0.3	Various parameters were used to select sites outside designated areas which had the particular wildlife value of relevance to marine renewables and renewables in general. Features taken into consideration include: cetacean distribution and numbers, seal haul outs, seabird breeding colonies, wintering sea duck and other water fowl, sensitive seabed habitats and frontal mixing zones in the sea.	
designated sites	Medium	0.5	Source: Derived from a variety of literature sources	
	Low	0.7	The distribution of under a locale of design at design at the two the two of t	
Landscape conservation	NSA	0.2	I ne distribution of various levels of designated areas that may be protected from development due to their scenic appeal. (Source: Highlands Council GIS)	
	World Horitage	0.2	oorno appear. Joouroo. riiginanao oounoli 010/	
Archaeological	World Heritage	0	Locations of designated archaeological sites	
conservation	Buffer	0.1	(Source: Highlands Council CIS DCAHMS)	
	Wrecks	0.5		
Marine Recreation	Marine Recreation	0.6	Distribution of marine recreation centres. (Source: Tourist Board)	
Film and prestige	Film	0.7	Distribution of outside finites locations and sections of the distribution (2)	
locations	Prestige	0.1	Distribution of existing filming locations and prestige resort locations. (Source: relevant web sites)	
	Submarine	0.1		
	exercise	0.1		
	Bombing range	0.1		
	Diving	0.4	Distrikution of military everying and training every	
MoD Training areas	I orpedo and	0.1	Source: Navigational charts and Macaulay Institute)	
	gunnery Tactical flying	0.4		
	Tactical flying &	0.4		
	submarine	0.4		
	exercise			
Creeling areas	Creeling	0.9	Distribution of creeling activity.	
			(Source: SEERAD data from occasional papers)	
Dradging areas	Drodeine	0.0	Distribution of dredging activity.	
Dredging areas	Dreaging	0.8	(Source: SEERAD data from occasional papers)	
			Locations of all fin and shell fish farms	
Aquaculture	Aquaculture	0.8	(Source: Crown Estate)	
Cables	Cables	0.0	Locations of submarine cables.	
Cables	Caples	0.8	(Source: Admiralty charts and Kingfisher charts)	

	Oil or gas field	0.6	Locations of oil & gas pipelines
Oil & Gas	License area	0.9	
	Pipeline	0.5	(Source: DTI)
	Major find	0.6	
	< 0.05	0.9	
Shipping concentration	0.05 to 0.5	0.9	Distribution of objecting densities
	0.5 to 1	0.8	Distribution of shipping densities.
Shipping concentration	1 to 2	0.7	(Source: Scottish Executive Renewable Resource Assessment for Scotland Appendices)
	2 to 5	0.6	
	> 5	0.5	
			Distribution of ferry routes.
Ferries	Ferry route 0.5	(Source: Ordnance Survey maps)	

Technical

Category	Sub category	Defaults
Turbine Specifications	Rated Power (MW)	5

Costs

Type of cost	Category	Sub category	Defaults	Comments
CAPEX	Non geographic	Total Estimate	£5,517,000	Capital costs not affected by any geographic variables.
	Marinised turbine	Class I (£ per unit) Class II (£ per unit) Class III (£ per unit)	£2,000,000 £1,800,000 £1,600,000	Cost of individual turbines.
	Marinised tower	• • • • • • · · · (2 • • • • • • • • • • • • • • • • • •	£230,000	Cost of marinised tower.
	Foundations	Monopile (£ per unit)	£180,000	Cost of building foundations depending on seafloor geology.
		Dry-bed	£100,000	Cost of building foundations on dry bed
		Rock	£70,000	Cost of building foundations on rock
	Cabling to GSP	Submarine (£ per km)	£17,000	Cost of laying cable between site and national grid.
	Vessel hire	£ per day	10000	Cost of hiring works vessel for 24 hrs
OPEX	OPEX	% of total CAPEX	1.8	
	Operating conditions multiplication factor	Exposed Semi exposed Sheltered	1.75 1.5 1.25	Factor to be applied to base operating costs depending on operating conditions.
	Land fees	% of wholesales	2	
	Selling price	p/kWh	1.2	
	Capital Recovery Factor	Number of years	20	
		Rate of Return	8	

Appendix C - Offshore wave

Constraints

Raster	Subset	Default	Comments	
	1	1		
	2	1	Each km ² was scored depending on the number of Munros & Corbetts scored the square. Three distance hands	
Visibility from Munros & Corbetts	3	1	were also introduced with the closest distance band scoring areatest.	
	4	1	were also introduced with the brocket distance band beening groutest.	
	5	1	(Source: Macaulay Institute)	
	6	1		
	1	0.0		
	2	1		
	3	1		
	4	1	?	
Visibility from	5	1	Each km ² was scored depending on the number of dwellings seeing the square. Three distance bands were also	
dwellings	6	1	introduced with the closest distance band scoring greatest.	
anoningo	7	1	(Source: Macaulay Institute)	
	8	1		
	9	1		
	10	0.9		
	1	0.0		
	2	1	Each km ² was scored depending on the number of tourism & recreation centres seeing a point. Two distances	
Visibility from tourism	3	1	were also introduced with the closest distance band scring areatest.	
& recreation centres	4	1		
	5	0.9	(Source: Macaulay Institute)	
	6	0.8		
	1	1		
	2	1	Each km ² was scored depending on the number of km ² points along the West Highland Way seeing a point	
Visibility from The	3	1	Three distance bands were also introduced with the closest distance band scoring greatest.	
West Highland Way	4	1		
	6	1	(Source: Macaulay Institute)	
	7	0.9		
Visibility from	5 km	0.9	Concentric bands of up to 5km, 5 to 10km and 10 to 15km were plotted. Any squares falling in these bands were	
designated	10 km	1	assigned the relevant values.	
viewpoints	15 km	1	(October Manada Institute)	
	-		(Source: Macaulay instruct)	
Airport exclusion zones	All sea development	0.8	Airport exclusion data was used to constrain development in various areas around the two major airports in the Highlands. Any developments that exceeded the heights listed for that square were prohibited. The 30km buffer is the recommended exclusion for turbine developments due to radar interference. (Source: Highlands Council GIS)	
International Biological Conservation	SAC	1	Locations of Internationally recognized conservation areas. (Source: Highlands Council GIS)	
Local Biological Conservation	MCA	0.2	Locations of locally designated conservation areas.	
	High	0.2	(Source: SWT, KSPB, SWR, Medaulay institute)	
Offshore wildlife	Medium	0.2	relevance to marine renewables and renewables in general. Features taken into consideration include: cetacean distribution and numbers, seal haul outs, seabird breeding colonies, wintering sea duck and other water fowl, sensitive seabed habitate and frontal mixing zones in the sea	
sites	Low	0.6	Source: Derived from a variety of literature sources	
Landscape	NSA	0.5	The distribution of various levels of designated areas that may be protected from development due to their scenic	
conservation	AGLV	0.6	appeal. (Source: Highlands Council GIS)	
Archaeological conservation	World Heritage World Heritage Buffer	0.1	Locations of designated archaeological sites	
	Wrecks	0.5		
Marine Recreation	Marine Recreation	0.6	Distribution of marine recreation centres. (Source: Tourist Board)	
	exercise Bombing range	0.1		
	Diving	0.2		
MoD Training areas	Torpedo and	0.1	Distribution of military exercise and training areas.	
	gunnery Tactical flying	0.0	(ouroc. reavigational charts and macaulay institute)	
	Tactical flying and submarine exercise	0.9		
Creeling areas	Creeling	0.9	Distribution of creeling activity.	
Dredging areas	Dredging	0.7	Distribution of dredging activity.	
Aquaculture	Aquaculture	1	Locations of all fin and shell fish farms. (Source: Crown Estate)	
Cables	Cables	0.9	Locations of submarine cables.	
Cables	Cables	0.0	(Source: Admiralty charts and Kingfisher charts)	
	Oil or gas field	0.6	Locations of oil & gas pipelines.	
Oil & Gas	License area	0.9		
	Major find	0.5	(Source: DTI)	
Shipping	< 0.05	0.9	Distribution of shipping densities.	
concentration	0.05 to 0.5	0.9		

	0.5 to 1	0.8	(Source: Scottish Executive Renewable Resource Assessment for Scotland. Appendices)
	1 to 2	0.7	
	2 to 5	0.6	
	> 5	0.5	
			Distribution of ferry routes.
Ferries	Ferry route	0.2	
			(Source: Ordnance Survey maps)

Technical

Category	Sub category	Defaults
Unit capacity	Rated Power (kW)	750
	Number of units per km ²	40
Nominal Wave Power	kW/m	55
Annual output (estimate)	GWh	2.7

Costs

Type of cost	Category	Sub category	Defaults	Comments	
CAPEX	Non geographic	Total Estimate	£740,000	Capital costs not affected by any geographic variables.	
	Cost of hiring vessel		£10,000	Cost of hiring works vessel for 24 hrs	
	Pelamis	Price per unit	£980,000	Cost of individual Pelamis unit	
	Installation	Price per unit	£10,000	Cost of installing individual Pelamis usnit	
	Moorings	Price per unit	£15,000	Cost of moorings for one Pelamis unit	
	Cabling to GSP	Submarine (per km)	£30,000	Cost of laying cable between site and national grid.	
OPEX		% of total CAPEX	1.8		
	Operating conditions multiplication factor	Exposed	1.5	Factor to be applied to base operating costs	
		Semi exposed	1.25	depending on operating conditions.	
		Sheltered	1		
	Land fees	% of wholesales	0		
	Selling price	p/kWh	1.2		
	Capital Recovery Factor	Number of years	20		
		Rate of Return	8		
Appendix D - Coastal wave

Constraints

Raster	Subset	Default	Comments		
	1	1			
	2	1			
	3	1			
	4	1	Each km ² was scored depending on the number of dwellings seeing the square.		
Visibility from dualling	5	1	Three distance bands were also introduced with the closest distance band scoring		
visibility from dwellings	0 7	0.9	greatest.		
	8	0.9	(Source: Macaulay Institute)		
	9	0.7			
	10	0.6			
	11	0.5			
	1	1	Each km^2 was seared depending on the number of tourism 8 represention control		
	2	1	seeing a point. Two distances were also introduced with the closest distance		
Visibility from tourism & recreation centres	3	1	band scoring greatest.		
	4				
	5	0.9	(Source: Macaulay Institute)		
	0	0.8	Conceptric hands of up to Elm. E to 40km and 40 to 45km ware platted. Any		
	10km	1	squares falling in these bands were assigned the relevant values		
Visibility from designated viewpoints	TOKIII	-			
	5km	0.8	(Source: Macaulay Institute)		
	All development	1	Airport exclusion data was used to constrain development in various areas around		
	All above 10.7m	1	the two major airports in the Highlands. Any developments that exceeded the		
Airport exclusion zones	All above 15.2m	1	heights listed for that square were prohibited. The 30km buffer is the		
	All above 45.7m	1	recommended exclusion for turbine developments due to radar interference.		
	All above 91.4m	1	(Source: Highlands Council GIS)		
	Maet	1	Locations of telecommunication masts and microwave links (Source Highlands		
Telecommunications	Microwave Link	1	Council)		
	Ramsar	0.8			
International Biological Conservation	SPA	0.7	Locations of Internationally recognized conservation areas.		
	SAC	0.8	(Source: Highlands Council GIS)		
National Biological Conservation	SSSI	0.8	Locations of Nationally recognized conservation areas		
	NNR	0.8	(Source: Highlands Council GIS)		
	National park	0.8	(
Local Biological Conservation	LNR	0.8			
	RSPB	0.9	Locations of locally designated conservation areas.		
	SWI Private pature recorve	0.7	(Source: SWT, RSPB, SNH, Macaulay Institute)		
	MCA	0.8	(
On the second difference in the destinent of sites	Montane	0.6			
Onshore wildlife outside designated sites	Moorland	0.8			
	Semi-natural woodland	0.6			
	Commercial woodland	0.9			
	Wetlands	0.6	Areas which are likely to have special wildlife value, but which lie outside the		
	Grassland	0.8	existing designations listed above.		
	Arable/cultivated	1			
	Lochs and freshwater	0.5	(Source: Macaulay Institute)		
	Urban	1			
	Quarries and airports	1			
	Cliffs	0.8			
	Recreational land	1			
Remoteness	2 to 5 km from track	0.5	Classification of remoteness developed by SNH, which takes account of the		
Kenidleness	> 8 km from track	0.4	distance from a road or track. (Source: SNH, Macaulay Institute)		
Goological conservation		0.2	Locations of geological SSSIs (Source: Highlands Council GIS)		
Landscape conservation	NSA	0.0			
	Designated viewpoint	0.9	The distribution of various levels of designated areas that may be protected from		
	AGLV	0.6	development due to their scenic appeal. (Source: Highlands Council GIS)		
	Designed landscape	0.9			
Archaeology	World heritage	0	Locations of designated archaeological sites		
	World heritage buffer	0			
	Scheduled site	0.8	(Source: Highlands Council GIS, RCAHMS)		
Film locations and presting locations	VVIECKS	1			
Film locations and prestige locations	Print locations	0.8	Distribution of existing filming locations and prestige resort locations. (Source: relevant web sites) $% \left({\left[{{{\rm{S}}_{\rm{s}}} \right]_{\rm{s}}} \right)_{\rm{s}} \right)$		
	Tactical flying	1			
			Locations of all fin and shell fish farms.		
Aquaculture		1	(Source: Crown Estate)		
Oil and gas	Oil or gas field	1	Locations of oil & gas pinelines		
	License area	1	Locations of oil & gas pipelines.		
	Pipeline	1	(Source: DTI)		
	Major find	1			
Hazardous areas	3km buffer Dounreay	0.9	Distribution of classified hazardous areas around the Highlands.		
	Skill buffer Dounreay	1	(Source: Highlands Council GIS)		
	okin buller Dounleay				

Appendix E - Tidal current

Constraints

Raster	Subset	Default	Comments	
Visibility from munros and corbetts	1	1	2	
	2	1	Each km ² was scored depending on the number of Munros &	
	3	1	introduced with the closest distance hand scoring greatest	
	5	1		
	6	1	(Source: Macaulay Institute)	
	7	0.8		
Visibility from dwellings	1	1		
	2	1		
	3	1	Each km ² was scared depending on the number of dwellings	
	5	1	seeing the square. Three distance bands were also introduced	
	6	1	with the closest distance band scoring greatest.	
	7	1		
	8	1	(Source: Macaulay Institute)	
	9	1		
	10	0.9		
Visibility from tourism and recreation	1	1		
centres	2	1	Each km ² was scored depending on the number of tourism &	
	3	1	recreation centres seeing a point. Two distances were also	
	4	1	introduced with the closest distance band scoring greatest.	
	5	0.9	(Source: Macaulay Institute)	
	6	0.8	()	
Visibility from the West Highland Way	1	1	Each lun ² was accord depending on the number of lun ² points	
	2	1	along the West Highland Way seeing a point. Three distance	
	3	1	bands were also introduced with the closest distance band scoring	
	4	1	greatest.	
	6	1	(Courses Macoulou Institute)	
	7	0.9	(Source: Macaulay Institute)	
	15km	1	Concentric bands of up to 5km, 5 to 10km and 10 to 15km were	
Visibility from designated viewpoints	TOKIT		plotted. Any squares falling in these bands were assigned the	
	10km	1	relevant values.	
	5km	0.9	(Source: Macaulay Institute)	
		0.0	Airport exclusion data was used to constrain development in	
Airport exclusion zones	All sea development	0.8	various areas around the two major airports in the Highlands. Any developments that exceeded the heights listed for that square were prohibited. The 30km buffer is the recommended exclusion for turbine developments due to radar interference.	
International Biological Conservation	SAC	1	(Source: Highlands Council GIS) Locations of Internationally recognized conservation areas. (Source: Highlands Council GIS)	
			Locations of locally designated conservation areas.	
Local Biological Conservation	MCA	0.2		
			(Source: SWT, RSPB, SNH, Macaulay Institute)	
	High	0.2	Various parameters were used to select sites outside designated areas which had the particular wildlife value of relevance to marine	
Offshore wildlife outside designated sites	Medium	0.4	renewables and renewables in general. Features taken into consideration include: cetacean distribution and numbers, seal haul outs, seabird breeding colonies, wintering sea duck and other water fowl, sensitive seabed habitats and frontal mixing zones in the sea.	
	Low	0.6	Source: Derived from a variety of literature sources	
	NSΔ	0.5	The distribution of various levels of designated areas that may be	
Landscape conservation	NOA	0.5	protected from development due to their scenic appeal. (Source:	
	AGLV	0.6	Highlands Council GIS)	
Archaeology	World heritage	0.1	Locations of designated archaeological sites	
	World heritage buffer	0.2	(Source: Highlands Council CIS PCALIME)	
	VVIECKS	0.5	Distribution of marine recreation contract	
Marine recreation		0.6	(Source: Tourist Board)	
	Submarine exercise and			
MoD training areas	noise ranging	0.1		
	Bombing range	0.1		
	Diving	0.2	Distribution of military exercise and training areas.	
	Tactical flying	0.1	(Source: Navigational charts and Macaulay Institute)	
	Tactical flying and	0.9		
	submarine exercise	0.1		
Creeling areas	Creeling area	0.6	Distribution of creeling activity.	
			(Source: SEEKAD data from occasional papers)	
Dredging areas	Dredging area	0.7	Ustribution of dredging activity.	
Aquaculture	Aquaculture	1	Locations of all fin and shell fish farms. (Source: Crown Estate)	
Cables	Cables	0.8	Locations of submarine cables.	
Oil and das	Oil or cas field	0.6		
On anu yas	License area	0.9	Locations of oil a gas pipelines.	
	Pipeline	0.5	(Source: DTI)	

68

	Major find	0.6	
Shipping concentration	< 0.05	0.9	
	0.05 to 0.5	0.9	Distribution of shipping densities.
	0.5 to 1	0.8	
	1 to 2	0.7	(Source: Scottish Executive Renewable Resource Assessment for
	2 to 5	0.6	Scotland. Appendices)
	> 5	0.5	
Ferry route	Ferry route	0.2	Distribution of ferry routes. (Source: Ordnance Survey maps)