

The Highland Council

Project number: 60536743 UHRD-ACM-ZZ-GE-RP-EN-00011

24 August 2018

Quality information

Revision History

Revision	Revision date	Details	Authorized	Name	Position
P01	12 th Feb 2019	For Information			
P02	21 st Feb 2019	For Information			

Distribution List

# Hard Copies	PDF Required	Association / Company Name
-		

Prepared for:

The Highland Council Glenurquhart Road, Inverness, IV3 5NX

Prepared by:

AECOM Infrastructure & Environment UK Limited 7th Floor, Aurora 120 Bothwell Street Glasgow G2 7JS United Kingdom

T: +44 141 248 0300 aecom.com

© 2018 AECOM Infrastructure & Environment UK Limited. All Rights Reserved.

This document has been prepared by AECOM Infrastructure & Environment UK Limited ("AECOM") for sole use of our client (the "Client") in accordance with generally accepted consultancy principles, the budget for fees and the terms of reference agreed between AECOM and the Client. Any information provided by third parties and referred to herein has not been checked or verified by AECOM, unless otherwise expressly stated in the document. No third party may rely upon this document without the prior and express written agreement of AECOM.

Table of Contents

1.	Introd	duction	5
	1.1	Introduction to this Report	5
	1.2	Background to the Proposed Development	5
	1.3	Environmental Impact Assessment	5
	1.4	Other Supporting Information	5
	1.5	Structure of the Report	6
2.	Dred	ging Requirements	7
	2.1	Dredging	7
	2.2	Dredge Sediment characteristics	7
3.	Avail	able Disposal Options	9
	3.1	Overview	9
	3.2	Option 1 – Land Reclamation on Site	9
	3.3	Option 2 – Construction Material Offsite	9
	3.4	Option 3 – Beach Recharge	10
	3.5	Option 4 – Sea Disposal at an Existing Disposal Site	10
	3.6	Option 5 – Sea Disposal at a New Disposal Site	11
	3.7	Option 6 – Landfill	12
4.	Asse	ssment of Disposal Options	13
	4.1	Summary of Available Options	13
	4.2	Option 1 – Land Reclamation on Site	13
	4.3	Option 2 – Construction Material Offsite	15
	4.4	Option 3 – Beach Recharge	16
	4.5	Option 4 – Sea Disposal at Existing Disposal Site	17
	4.6	Option 5 - Sea Disposal at New Sea Disposal Site within Uig Bay	18
	4.7	Option 6 – Landfill	19
5.	Wast	e Hierarchy	20
6.	Ident	ification of the BPEO	21
	6.1	BPEO Scoring Matrix	21
	6.2	Discussion	22
Appe	ndix A H	lolequest Ltd Geotechnical Sampling and Testing Extract	24
Appe	ndix B A	spect Survey Vibro-Core Sampling and Testing Extract	25
Fig	ures		
		sting, open, marine disposal sites (source – Extract from Marine Scotland Ma	
Figur	e 2. Loc	cation of fish farms in relation to proposed development	14
Tab	les		
		mary of Pre Disposal Sampling Test	
Table	e 2: A sur	mmary of the Assessment of the Best Practical Environmental Option	21

1. Introduction

1.1 Introduction to this Report

- 1.1.1 This report presents the results of the Best Practicable Environmental Option (BPEO) assessment prepared by AECOM on behalf of The Highland Council (hereafter referred to as the 'Applicant') for the dredging and dredge disposal associated with the Uig Harbour Redevelopment (hereafter referred to as the 'Proposed Development'). This report accompanies a marine licence application to Marine Scotland (MS) for capital dredging and opening a new sea disposal site in the vicinity of Uig Bay for the disposal of the dredged material.
- 1.1.2 The purpose of the BPEO assessment is to identify the disposal option that provides the most environmental benefit or least environmental damage. This assessment considers the alternative options available against a range of criteria including technical feasibility, environmental impact and cost.

1.2 Background to the Proposed Development

- 1.2.1 Uig Harbour is located in Uig Bay in the north east of the Isle of Skye. It forms part of the 'Skye Triangle' (along with Tarbert and Lochmaddy), providing lifeline ferry services for communities in the Western Isles. The Pier at Uig Harbour, named King Edward Pier, serves the CalMac ferry route to the isles of Harris and North Uist. The Pier is under the control of Highland Harbours which is run by the Applicant, whilst the ferry service operations are controlled by CalMac Ferries Ltd. (CFL).
- 1.2.2 Increasing demand and aging tonnage has led the ferry operator to commission new, larger ferry vessels for a number of its routes. The 'Skye Triangle' has been identified by the operator as a priority and the procurement of a new vessel for this route has commenced. A number of upgrades are required to Uig Harbour to accommodate the new, larger vessel, including a capital dredge at the berth and along the approach way. Maintenance dredges will also be required in the future.

1.3 Environmental Impact Assessment

1.3.1 In view of the nature, size and location of the Proposed Development, an Environmental Impact Assessment (EIA) has been carried out by AECOM to assess the onshore and offshore elements of the Proposed Development. The EIA Report will be submitted as part of the marine licence application together with this BPEO assessment.

1.4 Other Supporting Information

- 1.4.1 The following supporting information will also accompany the application:
 - · Site Characterisation Report;
 - Environmental Impact Assessment Report
 - Pre-Application Consultation Report;

1.5 Structure of the Report

- 1.5.1 This report has the following structure:
 - 1. Introduction
 - 2. Dredging Requirements
 - 3. Available Disposal Options
 - 4. Assessment of the Disposal Options
 - 5. Identification of the BPEO

2. Dredging Requirements

2.1 Dredging

- 2.1.1 Uig Harbour was last dredged in 2015. This was classed as a 'maintenance dredge to ensure that the operation of the harbour is maintained'. The volume of dredge was less than 5000m³ and therefore was deemed acceptable by Marine Scotland for beach nourishment.
- 2.1.2 The proposed 'Capital Dredge' is required due to the increased draft of the proposed new vessel of 0.5m depth and to increase resilience of the route for use by a range of vessels (up to and including the draft depth of the MV Isle of Lewis). The proposed dredge volume would be 30,792m³. This volume would provide sufficient depth for the harbour for all intended vessels provided by CFL to serve Uig. Following the Capital Dredge, maintenance dredging will be required to maintain the depth in the navigable areas. The anticipated maintenance dredging will be undertaken at 5 yearly intervals.

2.2 Dredge Sediment characteristics

- 2.2.1 The material to be dredged was sampled and analysed. This was undertaken during the ground investigation undertaken by Holequest Ltd and included in document No. THC/UHRG1/1117/FACT (attached in Appendix A) and the sampling undertaken by Aspect Surveys (attached in Appendix B). The finding from the ground investigation identified that the material contains elevated levels of some metals as discussed further below.
- 2.2.2 Geo-chemical testing was undertaken on nine samples from the superficial deposits at three locations in order to determine the suitability for disposal of any dredged material at sea:
 - BH DS01 at 0.3m, 1.5m and 3.0m BSBL.
 - DS02 (seabed sample) at 0.1m, 0.5m and 0.8m BSBL.
 - BH1 at 0.0m, 0.5m and 2.0m BSBL.
- 2.2.3 The results are compared to the Marine Scotland Action Levels, as published in the Pre-Disposal Sampling Guidance Version 1 (2017). This comparison can be observed in Table 1, reproduced below.

Table 1: Summary of Pre Disposal Sampling Test

Contaminant	Action Level 1 (mg/kg dry weight)	Action Level 2 (mg/kg dry weight)	Maximum recorded concentration (mg/kg)	Number of exceedances (AL1-AL2)
Arsenic	20	70	9	0-0
Cadmium	0.4	4	0.3	0-0
Chromium	50	370	490	9-4
Copper	30	300	97	8-0
Mercury	0.25	1.5	0.35	1-0
Nickel	30	150	260	9-8
Lead	50	400	7.6	0-0
Zinc	130	600	120	0-0
Tributyl tin	0.1	0.5	22	1-1
Polychlorinated Biphenyls	0.02	0.18	0.0092	0-0

- 2.2.4 The exact location of areas to be dredged remains unconfirmed. The samples taken from the existing pier should therefore be used for a preliminary assessment only, with further sampling required at a future date once the dredge area is defined.
- 2.2.5 There are recorded concentrations of five substances which exceed the relevant Action Level 1 (AL1) concentrations. Three of these substances also exceed the Action Level 2 (AL2) concentrations. Three Chromium concentrations above the AL2 threshold value were recorded in the 3 samples from the 'Seabed' sampling location (DS02) and the one in the 1.5m BSBL sample at the BH DS1 location. Elevated Nickel concentrations above the AL2 threshold were observed in samples from all three locations. The 1.5m sample from BH DS1 exceed the AL1 concentrations of 8 PAH's, concentrations over double the action level are recorded for Dibenzo(ah)anthracene, Furoanthene and Pyrene. The PAH (total) value for this sample is well below the AL1 concentration.
- 2.2.6 For the Post glacial Deposits in the Foreshore Area
- 2.2.6.1 The trial pits encountered very soft / very loose material at the surface, underlain by variable deposits of sands, gravels, silts and clays including shell debris and organic material. Borehole BH07 encountered possibly organic clay, dense to very dense sand and gravel and gravel overlying stiff to very stiff clay. Most of the CPTs were terminated at shallow depth due to obstructions, however they also encountered variable deposits of variable consistencies.
- 2.2.6.2 Laboratory classification testing of the organic silt indicates that recorded moisture contents range from 24% to 50%. The finer fraction recovered from the more cohesive materials generally classifies as silts (occasionally clays) of high plasticity (plasticity index ranging from 17 to 33, average 23). Particle size distribution analysis indicates the material to be slightly clayey to clayey slightly sandy slightly gravelly silt.
- 2.2.7 Glacial Till Deposits in the Pier Area
- 2.2.7.1 The superficial deposits around the existing pier comprised variable deposits of sands, gravels, silts and clays down to depths of between 6.4m and 9.6m below seabed level. Below this were generally stiff to very stiff (locally firm) clay with bands of sand and /or gravel, with cobbles and boulders, proved to a to maximum depth of 36.5m below seabed level (-40.94m CD).
- 2.2.7.2 Laboratory classification testing indicates that recorded moisture contents range from 10% to 32%. The finer fraction recovered from the more cohesive materials generally classifies as clays of low to intermediate plasticity (plasticity index ranging from 7 to 35, average 18). Particle size distribution analysis indicated the glacial till materials to contain varying proportions of finer and coarser materials but to primarily comprise silty / clayey slightly sandy GRAVEL or slightly sandy slightly gravelly to gravelly CLAY (based also on the classification tests).

3. Available Disposal Options

3.1 Overview

3.1.1 A range of disposal options have been considered in this BPEO assessment including the following and detailed in the following sections:

Option 1 - Land Reclamation on Site

Option 2 - Construction Material Offsite

Option 3 - Beach Recharge

Option 4 - Sea Disposal at Existing Disposal Site

Option 5 - Sea Disposal at New Sea Disposal Site

Option 6 - Landfill

3.2 Option 1 – Land Reclamation on Site

- 3.2.1 The Proposed Development includes the expansion of the current marshalling area by land reclamation. A proportion of the dredged material could be used as infilling material for the land reclamation, if appropriately prepared to a suitable specification. To reuse the material, further working of the material would be required. The material would first be landed from the dredger. The dredged arisings must then be placed onshore and moved to an appropriate space to be dried and classified, then additional material added to ensure the dredge material is compliant with specification for infill and/or treatment for contamination then relocated to be deposited in the reclaim.
- 3.2.2 Transportation of the material to a space for drying out would generate an increase in traffic for moving the 30,792m³ of dredging. If the assumption is they were moved by 40t trucks and is adopted, this would generate circa 1,400 vehicle movements for moving to the processing site and additional 1,400 movements to the reclaim area. This would total approximately 2,800 vehicle movements.

3.3 Option 2 – Construction Material Offsite

3.3.1 Dredged material can be suitable for use as construction material offsite. Given the high content of certain metals identified in the ground investigation and sampling undertaken in 2017 of the sediment in Uig (see section 2.2), the material would require treatment prior to further use as a construction material. The material would have to be landed and transported to an appropriate site for treatment, then transported to a storage site and finally further transported to the site for its specific use. This option is similar to option 1 except it moves the process to a remote site from this locality (potentially - Duisky Landfill Site, Kinlocheil, near Fort William - 137 miles away from Uig by road). The potential triple or quadruple handing of the material and processing would create significant cost.

3.4 Option 3 – Beach Recharge

3.4.1 Should there be a requirement for beach recharge this option considered whether the dredged material could be used for this purpose. This would require Marine Scotland's approval and could only be suitable for small amounts (<5000m³). The methodology would require; sampling of the proposed recharge area to consider the suitability of the receiving material, and then monitoring of the area identified for disposal and its adjacent parts for sediment transportation and 'drift' for a period before and after recharge of a minimum of 2 years. It is understood that the existing foreshore has a relatively low amenity to the local community and is tidally flooded. A detailed methodology for undertaking this work was not identified at this stage as it was considered that the time required to undertake an assessment and associated monitoring is not compatible with the project programme and costs.

3.5 Option 4 – Sea Disposal at an Existing Disposal Site

- 3.5.1 There is an existing disposal site at Loch Broom adjacent to Ullapool Harbour as shown in Figure 1. It is understood the site was used for the disposal of dredged material for Ullapool Harbour Redevelopment in 2015. The distance to the site from Uig is approximately 75 nautical miles. This distance would mean that the dredging operation would require additional time as the hopper for the dredger would need to travel to the disposal site. Additional hoppers would be required.
- 3.5.2 The disposal site at Ullapool would need to be tested and assessed for chemical suitability and compatibility with the known characteristics, including high metal content, of the dredge material expected from Uig Bay. The consideration of cost/programme impact due to the distance and the mobilisation of additional equipment and timescale would extend the programme due to travel time to the disposal site, it is estimated this would add 2-4 weeks to the dredging activity programme. Cost associated with this task would increase by 100-200% when compared to disposal at a new local site to Uig.

3.5.3

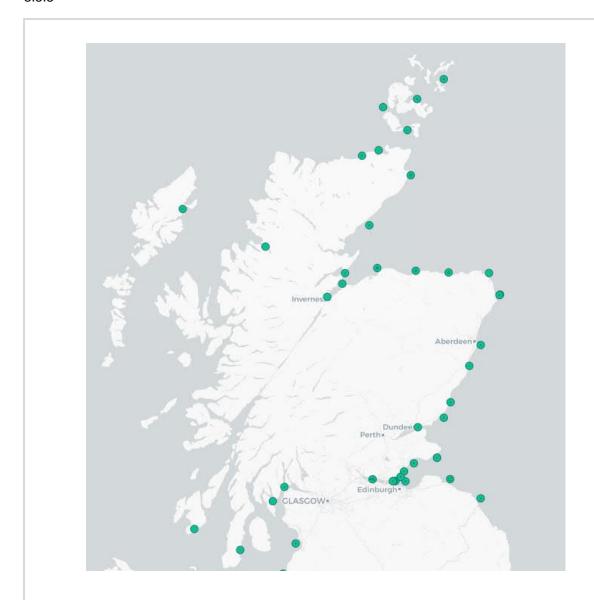


Figure 1. Existing, open, marine disposal sites (source – Extract from Marine Scotland Maps NMPI)

3.6 Option 5 – Sea Disposal at a New Disposal Site

3.6.1 Given the significant distance to existing sea disposal sites, this BPEO assessment also considered the potential of opening a new disposal site within Uig Bay. This option offers an opportunity for efficient materials handling as dredge material will be collected straight into the barge hopper and disposed of without any additional processing.

The high metal content expected within the dredge sediments is likely to be at least partially, as a result of naturally occurring geological process 'BGS, Information on Land Quality in Scotland, R&D Technical Report P293'. These characteristics are therefore likely to be relatively widespread within Uig Bay. Disposing of dredged materials locally, would

therefore minimise the risk of distributing contamination to areas which are currently unaffected.

3.6.2 A Site Characterisation Study including a survey programme to identify physical, chemical and biological characteristics of an agreed search area within Uig Bay would be required in order to identify a suitable disposal site. Appropriate disposal licencing would then be required to be agreed with Marine Scotland.

3.7 Option 6 – Landfill

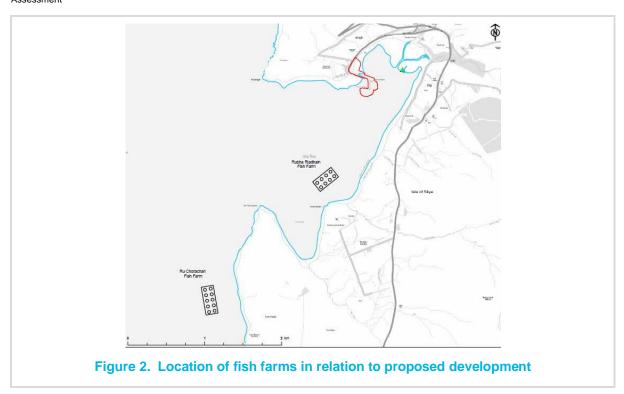
3.7.1 The dredged material would be landed and transported by road to Duisky Landfill Site, Kinlocheil, near Fort William. This site was identified but has not been confirmed to be suitable to accept the waste. The cost associated with road transport of the dredge arisings would be in_excess of £2.5m with the considered volume for road transport. Space on land would be required to process the material for road transport. The material would need to be landed and dried prior to transport.

4. Assessment of Disposal Options

4.1 Summary of Available Options

4.1.1 As part of the assessment, an indicative high-level cost of each option along with consideration of the practicalities of physically undertaking of each option was considered in developing the BPEO. The chemical composition of the dredged arising considered is summarised in section 2.2 of this report and is provided from the ground investigation undertaken by Holequest Ltd in document No. THC/UHRG1/1117/FACT. The results of the sampling testing are included in Appendix A with further dredge sampling which was also undertaken by Aspect Surveys and results are included in Appendix B.

4.2 Option 1 – Land Reclamation on Site


Strategic Considerations

- 4.2.1 The handling of the dredge material onshore will present specific operational challenges, as the material will be saturated, difficult to handle (till dried) and will have an odour issue dependent upon wind direction and amount of organic bed material recovered. The dredged material would need to be; landed, transported, classified, separated, treated/improved, tested and then transported to the reclamation.
- 4.2.2 As part of the ground investigation, testing was undertaken to find the composition of the samples, the material was found to contain concentrations of certain metals specifically, chromium and nickel which are believed to be naturally occurring. The level of chromium and nickel in some samples exceeded the level 2 actions used by Marine Scotland for Dredged Material Assessment. Liaison with Marine Scotland and the Applicant regarding the possibility of reuse of the material took place. Marine Scotland's Malcolm Rose indicated that the observed high levels of metals in the area are likely naturally occurring. This is acknowledged in 'BGS, Information on Land Quality in Scotland, R&D Technical Report P293'

Environmental Considerations

4.2.3 The odour from the dredged material (see below) may cause discomfort to those in proximity of the site compound, which is proposed to be adjacent to the existing terminal building, local businesses and residential property.

The landing of the dredged material could impact on the existing harbour activity which would include the Harbour and ferry operation, as well as the local community. The estimated dredge volume of circa 30,792m³ would require approximately 1,400 vehicle movements on the pier for tippers to take it to the compound, this additional traffic could be expected to have a detrimental effect on the local community and road, road users, with increase noise, emissions and road safety.

Aesthetically, the storage of dredged arisings on land, initially in the form of a slurry then once processed, arisings will be in a dried form, would be visually intrusive. In addition arisings may result in potential odour issues particularly when in slurry form. In dried form, dust may also be a problem.

Available mitigation options for the above would be to install hoarding and covers as appropriate. Management of the run-off from the drying process would require additional surface drainage management. Traffic management measures would also be adopted to manage the additional traffic, but limited measures could be used to reduce the impact of this option on odour and handling.

During the drying process airborne dust would require standard dust suppression measures for the arisings.

Cost Considerations

4.2.4 The cost for handling the dredge material, classification, treatment and reuse would be £1.5 this considers that 50% of the material would be unsuitable for the reclaim material and this would need to be transported to landfill and disposed. The cost considerations are for the practical undertaking of the work.

4.3 Option 2 – Construction Material Offsite

Strategic Considerations

- 4.3.1 As discussed within Option 1, the handling of the dredge material onshore will present specific challenges, as the material will be saturated, difficult to handle until it has been dried and may present an odour issue; dependent upon wind direction and amount of organic bed material recovered. The dredged material would need to be; landed, transported, classified, separated, treated/improved, tested and then transported to the reclamation. The licensing for 'disposal' on land would need acceptance from SEPA.
- 4.3.2 As part of the ground investigation, testing was undertaken to find the composition of the samples, the material was found to contain naturally occurring high metals. The level of chromium and Nickel in some samples exceeded the level 2 actions levels used by Marine Scotland for Dredged Material Assessment. Treatment of the material would be required to ensure all levels are below Action Level 1. Currently the samples also show elevated levels of copper that exceed the Level 1 actions level used by Marine Scotland for Dredged Material Assessment. Landfill tax and waste management certification would be required to ensure proper processing and disposal.

Environmental Considerations

- 4.3.3 The handling of the dredged material would increase the risk to health and safety, with the increased traffic cause by the movement of the material, potential dust from drying and processing and also the work of processing the arisings. The material would be transported by road to a site for processing and treat the dredging to remove or reduce the levels of the metals in the soil so it can be used in alternative locations and organic matter, also specific processing for the purpose of the reuse of the material. The risks to the public in this option are reduced when compared to option 1 however, the whole process would occur at the nearest landfill site which, is approximately 137 miles away.
- 4.3.4 The material once treated could be suitable for a different application but the transportation of the material will again be required to the location where it is required. The distance the material would have to travel and the processing that would be required may be is impractical.

Cost Considerations

4.3.5 The key cost would be the transportation of the sediment. It is estimated from experience and consideration of the transport costs and distance to the landfill site that the cost of this option would be in excess of £2m. The cost considerations are for the practical undertaking of the work.

4.4 Option 3 – Beach Recharge

Strategic Considerations

- 4.4.1 The dredging could be dispersed from the hopper at high tide on the foreshore using a splitter hopper adjacent to the works to the north and east of the proposed marshalling area. This would minimise any requirement for road transport. At low tide tracked "back actor" excavator could be used to spread the arisings to form the beach nourishment, a deposition depth of 600mm has been assumed, which would require significant foreshore area to disperse the material.
- 4.4.2 The potential was identified for sediment movement from beach recharge location(s) back towards the dredge area around the berth as a result of natural coastal processes, which may lead to the requirement for a more frequent maintenance dredging regime.
- 4.4.3 This option would require beach monitoring pre- and post- disposal in order to understand natural beach recharge rates and existing rates of coastal weathering etc. No monitoring has been undertaken to date. The period of monitoring may vary but would likely include two years of monitoring pre-disposal and 1 year after disposal. These fall outwith the timescales of the project for the pre-disposal surveys.
- 4.4.4 Dredge disposal licence(s) would be required from Marine Scotland for this option.
- 4.4.5 Disposal in the beach location would also increase the siltation rate of the fisherman's berth.

Environmental Considerations

- 4.4.6 Beach recharge was initially considered as a viable option where the dredge volume was <5000m³. However as the volume of dredge material now expected is significantly more than 5000m³ following our original consultation with Marine Scotland (5th July 2017) acknowledged concern that should the dredge volume be >5000m³ they would have difficulty in them accepting the volume. From our discussion large volumes of beach recharge in this area was not acceptable.
- 4.4.7 Noise generated as a result of vehicle movements and from sediment handling machinery on the foreshore would impact the local community. It has also been assumed that this option does not offer sufficient capacity for the disposal of the full volume of dredge sediment expected. As a result the remainder of dredge materials would also require disposal through one of the other method options discussed above also therefore incurring additional environmental effects associated with this additional disposal method.

Cost Considerations

- 4.4.8 The cost associated with this option would be comparable with disposal at a new sea disposal site. It is considered possible that disposal of up to approximately 5000m³ could be accommodated by this option in Uig Bay. As a result other forms of disposal would be also required.
- 4.4.9 For this exercise it is assumed that some may be used if suitable in the backfill of the infill are of 50% of the total dredged volume and the remaining is taken to landfill. This is estimated from experience and the above considerations to be £1.2m. The cost considerations are for the practical undertaking of the work.

4.5 Option 4 – Sea Disposal at Existing Disposal Site

Strategic Considerations

4.5.1 The existing disposal site closest to Uig is at Loch Broom at Ullapool. This is approximately 75 nautical miles away from the dredging area. Using a site at this distance from the Proposed Development would increase the cost and time required, meaning additional hoppers, tugs and equipment would likely be required. This option would also require further assessment of the characteristics of the existing disposal site at Ullapool to establish its suitability to accept dredge sediments from Uig. An assessment of the suitability of the site would be required prior to disposal and a licence from Marine Scotland for disposal at the site

Dredge disposal at the existing site at Ullapool would require significant transit times for the dredge hopper(s) between Uig and Ullapool. As a result the capital dredge programme could be expected to be subject to greater influence by weather conditions than other options under consideration.

Environmental Considerations

- 4.5.2 The disposal site in Loch Broom at Ullapool lies within the Wester Ross Marine Protected Area (MPA) designated for burrowed mud and circalittoral muddy sand communities. All three species of seapen found in Scottish coastal waters are present within this MPA, including substantial numbers of the nationally scare tall seapen (Marine Scotland et al 2014)¹. Whilst this disposal site is listed as an open site, It is considered that disposal of the quantity of dredge materials to be generated by the Proposed Development could result in significant effects on the benthic habitats for which this MPA is designated.
- 4.5.3 The distance between Uig and the disposal site at Ullapool would also result in higher vessel emissions when compared to more local disposal options, with result effects on air quality.

Cost Considerations

4.5.4 The cost associated would be approximately £1m. This is estimated considering the distance the disposal site is from Uig bay, the extended time for dredging required with extra equipment and risk of weather delays is more prominent as the duration of the dredge would possibly extended. The cost considerations are for the practical undertaking of the work.

Prepared for: The Highland Council

¹ Marine Scotland, JNCC, SNH and The Scottish Government (2014): Wester Ross Marine Protected Area: Amazing marine biodiversity in a glacial landscape.

4.6 Option 5 – Sea Disposal at New Sea Disposal Site within Uig Bay.

Strategic Considerations

- 4.6.1 This option offers the opportunity for efficient materials handling, when compared with other options and could therefore be expected to have the least impact on the receiving environment in terms of operational impact and handling.
- 4.6.2 A marine disposal licence will need to be obtained. The marine licence application will be required to include an assessment of the proposed site for suitability for the dredge disposal. Licence determination is expected to take up to 16 weeks, although it has been acknowledged in discussion with Marine Scotland that application consideration timescale may be extended as a reflection of the potential complexity of the application.
- 4.6.3 In obtaining a licence for a new sea disposal site for dredge arisings in close proximity to the Proposed Development, this would streamline and minimise subsequent potential effects as a result of future maintenance dredging.

Environmental Considerations

4.6.4 Consideration of potential for sediment dispersion impacts affecting the two identified fish farms in Uig would need further assessment. This option has minimal impact on public health. The elevated metal content in the samples would need to be assessed with the sampling from the disposal site. It is assumed at this stage the material is suitable when considering the proximity to the dredge site.

A benthic survey and assessment would need to be undertaken to understand the characteristics of existing benthic communities within Uig Bay and to ensure any effects as a result of sediment deposition could be minimised.

Cost Considerations

4.6.5 The cost associated with the dredging and disposal at the new site and disposal at Sea is estimated at £550k. The cost considerations are for the practical undertaking of the work.

4.7 Option 6 – Landfill

Strategic Considerations

- 4.7.1 The considerations associated with disposing of dredged deposits to landfill are similar to those discussed in Option 1 and 2. The transportation is a key consideration and the cost of landfill tax would be substantial.
- 4.7.2 Due to the substantial cost associated with this option (as discussed below) and duration of programme required to transport this volume by road and the associated time requirements of having to land the arising and dry the material prior to transport. This option should be dismissed. The landfill site at Lochaber and the one identified above at Duisk are a significant distance by road. The cost associated with moving the dredging and processing at Uig was considered unfeasible.

Environmental Considerations

4.7.3 As discussed above the handing of the dredged arisings and traffic movements, noise, air quality and amenity disturbance would discount this option.

Cost Considerations

4.7.4 The key cost would be the transportation of the sediment and a desktop exercise was undertaken to ascertain the most practicable landfill that could be used to treat, store and reuse the material and concluded it would be the Duisky Landfill Site, Kinlocheil, near Fort William, approximately 137 miles away from the site. This would incur a significant cost, in excess of circa £2.5m more than disposal at a new disposal site. The cost considerations are for the practical undertaking of the work.

5. Waste Hierarchy

- 1. **Prevention** this is not possible as without dredging the 'lifeline' ferry service to Tarbert and Lochmaddy could not operate regularly.
- 2. Re-use of the material is discussed in this BPEO assessment, but it is not considered feasible as a result of the chemical composition of the sediments, and the required handling and processing of material that will be highly saturated. The high metal content, fine material as the level of preparation of the dredged material would be subject to thorough de-watering makes it unsuitable for re-use.
- **3. Recycling** of the dredging has been assessed as part of the BPEO but is not suitable due to the makeup of the dredged material in the geotechnical report and water content. The following options are discussed:
 - a. Beach Recharge
 - b. Reclaim
 - c. Landfill and
 - d. Construction Material

All options were found unsuitable, predominantly due to the characteristics of the dredged material.

- **4. Other Recovery** the limited use of the material and the significant cost of processing/remediation would not be viable.
- 5. **Disposal** for both onshore and offshore application have been assessed as part of the BPEO. The distance of the nearest landfill site would not be feasible due to the practical, economic and environmental cost associated with disposal to land.

6. Identification of the BPEO

6.1 BPEO Scoring Matrix

- 6.1.1 In considering the options, the key benefits and disadvantages of each option have been considered and an indicative scoring of Low/Moderate/High impact allocated as described below:
 - Cost This is an assessment from the cost estimates associated with each option.
 The options are compared with each other where high is the highest and the low present the lowest assumed cost.
 - Logistical difficulty This considers the handling and the movement of the arisings. The distance and number of times the arising are transferred and handles was considered. High is the most distance and times the material is transferred and handled.
 - **Environmental impact** this is an overall consideration for the natural environment that the option would have for the lifecycle of the options. The greater the impact this would be classed as high, when compared against all the other options.
 - **Public Health Risk** this considers the interaction of the options with human health. High describes the high risk to human public health when compared against the other options.
 - **Duration** is the estimated time to undertake the option. High is for high duration of the options
 - **Technical Difficulty** This considers the practical possibility of delivering these options within the context of the project This looks at the need for space and time to undertake the option and compares them against each other.

Table 2: A summary of the Assessment of the Best Practical Environmental Option

Options	Cost	Logistical Difficulty	Environmental Impact	Public Health risk	Duration	Technical Difficulty
1. Reuse for Land Reclamation	Moderate	Moderate	Low	High	High	High
2. Reuse for Offsite	High	High	Low	Moderate	Moderate	High
3. Beach Recharge	Low	Moderate	Moderate	Low	Moderate	High
4.Sea Disposal at Existing Site	Moderate	Low	High	Low	Low	Moderate
5. Sea disposal at New Site	Low	Low	Moderate	Low	Low	Low
6.Landfill	Very High	Moderate	Low	Low	Moderate	High

6.2 Discussion

- 6.2.1 The strategic considerations highlighted that the need for handling and transport of the dredged arisings is a key consideration particularly in consideration of onshore disposal options due to the volume of material required to be moved by road transport. The Need to process the arising on land is considered impractical either as a result of the extensive site space that would be required if processed locally, or as a result of the distance for the material to be transported for offsite disposal options. The effort to move the material would increase vehicular traffic increasing the risk to Health and Safety of the local community and road safety.
- 6.2.2 The assumed dredge method for the capital dredge is cutter suction dredging, which would place the arisings on a hopper. The subsequent landing of this material for processing with significant vehicular movements, as proposed in Option 1 would be both technically impractical and disruptive for the local community. The visual intrusion of storage, odour from drying, noise from moving vehicles, dust from arisings and the need to store this material with limited space mean this was discounted at an early stage. Uig is a small town and its connection made by the Lifeline ferry service to Tarbert and Lochmaddy makes it a tourist and visitor area and the operation to land the arisings would not be advantageous to the local community or visitors/tourists
- 6.2.3 A similar range of environmental considerations exist for Option 2, with the exception of the significant vehicular movements created as a result of landing the arising. The distance to the Duisk site would also increase the level of vehicle activity and the time required to dispose of dredge materials.
- 6.2.4 The high metal content in samples collected limits the reuse of the material away from the locality of the works. Beach nourishment with dredged material has been undertaken in the past but the volume of such previous works was low and this option was considered likely to have a significant impact on the foreshore unsuitable for the volume of dredge arisings to be generated here. The long terms effects of beach recharge are difficult to measure but it is considered likely that the material would increase the siltation rate of the vessel berth area along the approachway used by the fisherman and commercial vessels directly adjacent to the area of disposal.
- 6.2.5 Beach recharge posed significant challenge with consenting due to the significant volume for the works. The volume of dredging would have meant a significant area of the foreshore would require to be used to spread the arisings to minimise impact. When this proposal was discussed with Marine Scotland it was noted that Marine Scotland would likely object to this approach due to the large volume discussed. Further consideration was the morphological and sedimentation process in the bay would likely increase the need for dredging of the harbour as the material 'drifts' and is transported onto the berths by swell, wave and current.
- 6.2.6 Due to the location of Uig, transportation both by road and sea to the existing disposal sites (both on and offshore) are significant for a project of this scale, increasing cost of the dredging and disposal part of this project, which would bring to question the viability of the project.
- 6.2.7 The need to keep the material local and minimise transportation provided the assessment with two meaningful options (3 & 5) Beach Recharge or New Disposal Site.
- 6.2.8 Option 3: Beach recharge was considered unlikely to offer sufficient capacity to accommodate the volume of dredge materials expected to be generated as a result of the Proposed Development.

- 6.2.9 The disposal at a new sea disposal site in proximity to Uig Bay would have impact on the sub-tidal habitats within Loch Snizort and Uig Bay which were mapped as part of the 1988 Skye Sealochs Marine Nature Conservation Review (MNCR) (JNCC, 2001). These include the habitats 'Seapens and burrowing mega fauna in circalittoral soft mud' and 'Kelp and red seaweed on sublittoral sediments'. 'Northern seafan and sponge communities' and 'Maerl beds' have also been previously recorded close to the Ascrib Islands. Whilst the burrowing megafauna in this biotope including seapens can tolerate smothering by fine sediments of up to approximately 30 cm depth, the sediment for disposal and quantity and depth of disposal required could be expected to result in localised habitat loss.
- 6.2.10 Careful consideration would need to be taken in identifying a specific site for a new disposal site, in order to minimise impact on local benthic communities. Notwithstanding this potential effect, it was considered that the particular characteristics of the local geology, including the naturally occurring elevated metal content expected within the dredge materials, should be most compatible for disposal in the local area, where the receiving environment could be expected to be similar. The minimal handling of sea disposal at the new disposal site is a most favourable as the arisings are neither landed or travelled a significant distance for disposal.
- 6.2.11 Option 5: Sea disposal in a new disposal location within the local area was identified as the BPEO to be taken forward to further investigation.

Appendix A Holequest Ltd Geotechnical Sampling and Testing Extract

Prepared for: The Highland Council

4:0 LABORATORY TESTING

A programme of laboratory testing, agreed with AECOM, was undertaken at the UKAS Accredited laboratories of PSL Ltd on behalf of Messrs Holequest Limited. The tests where appropriate were undertaken in accordance with British Standard 1377 "Methods of Tests for Soils for Civil Engineering Purposes" or as indicated otherwise. The various tests undertaken are as follows:-

- 1) NATURAL MOISTURE CONTENT
- 2) PARTICLE SIZE DISTRIBUTION BY WET SIEVE
- 3) PARTICLE SIZE DISTRIBUTION BY SEDIMENTATION (PIPETTE)
- 4) LIQUID & PLASTIC LIMITS
- 5) CONSOLIDATED DRAINED SHEARBOX
- 6) CONSOLIDATED UNDRAINED TRIAXIAL WITH MEASUREMENT OF POREWATER PRESSURE (MULTISATGE)
- 7) ONE DIMENSIONAL CONSOLIDATION

A programme of laboratory testing for contaminants, agreed with AECOM, was undertaken at the UKAS / MCERTS accredited laboratory of Scientific Analysis Laboratories Ltd, on behalf of Messrs Holequest Limited. The soil and water samples were tested for one or more of the following:-

- 1) BRE SD1 SUITE
- 2) MARINE SCOTLAND SUITE
- 3) WASTE ACCEPTANCE CRITERIA (UNKNOWN)
- 4) ARSENIC
- 5) BORON (WATER SOLUBLE)
- 6) CADMIUM
- 7) CHROMIUM (TOTAL)
- 8) COPPER
- 9) CYANIDE (TOTAL)
- 10) LEAD
- 11) MERCURY
- 12) NICKEL
- 13) pH
- 14) SELEMIUM
- 15) SULPHATE (ACID SOLUBLE AND 2:1 EXTRACT)
- 16) ZINC
- 17) ORGANIC MATTER CONTENT
- 18) PAH (EPA 16)
- **19) SVOC**
- **20)** VOC
- 21) TPH (ALIPHATIC / AROMATIC SPLIT)
- 22) ASBESTOS ID

The Geotechnical and Environmental Laboratory Test Results are summarised in Appendix IV.

Prepared By: for HOLEQUEST LTD Approved By: for HOLEQUEST LTD Dated:- November 2017 Approved By: Dated:- November 2017

APPENDIX IV

Laboratory Testing

ii) Environmental Testing

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences Certificate of Analysis

16 Langlands Place Kelvin South Business Park East Kilbride G75 0YF Tel: 01355 573340

Tel: 01355 573340 Fax: 01355 573341

Report Number: 669675-2

Date of Report: 08-Aug-2017

Customer: Holequest

Winston Road Galashiels TD1 2DA

Customer Contact:

Customer Job Reference: 17/035
Customer Purchase Order: 17155
Customer Site Reference: UIG, Skye
Date Job Received at Concept: 19-Jul-2017
Date Analysis Started: 21-Jul-2017
Date Analysis Completed: 08-Aug-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by :

Issued by:

Sediment Analysed as Sediment

Metals Matrix Spike

	669675 005						
Customer Sample Reference Matrix Spik							
Determinand	Method	d Test Sample LOD Units					
As Recovery	T750	AR	1	%	100		
Cd Recovery	T750	AR	1	%	100		
Cr Recovery	T750	AR	1	%	100		
Cu Recovery	T750	AR	1	%	90		
Ni Recovery	T750	AR	1	%	100		
Pb Recovery	T750	AR	1	%	100		
Zn Recovery	T750	AR	1	%	100		

Soil Analysed as Soil

PAH Matrix Spike

	Concept Reference							
	e Reference	Matrix Spike						
	20-JUL-2017							
Determinand	Method Test Sample LOD Units							
Naphthalene Recovery	T429	AR	1	%	92			
Acenaphthene Recovery	T429	AR	1	%	97			
Phenanthrene Recovery	T429	AR	1	%	93			
Chrysene Recovery	T429	AR	1	%	95			
Benzo(a)Pyrene Recovery	T429	AR	1	%	99			

Soil Analysed as Soil

PCB Matrix Spike

	669675 004				
		Custor	ner Sampl	le Reference	Matrix Spike
			D	ate Sampled	20-JUL-2017
Determinand	Method	Test Sample	LOD		
PCB BZ#28 Recovery	T434	AR	1	%	84
PCB BZ#52 Recovery	T434	AR	1	%	94
PCB BZ#101 Recovery	T434	AR	1	%	86
PCB BZ#118 Recovery	T434	AR	1	%	90
PCB BZ#153 Recovery	T434	AR	1	%	86
PCB BZ#138 Recovery	T434	AR	1	%	92
PCB BZ#180 Recovery	T434	AR	1	%	92

Sediment Analysed as Sediment

Marine Scotland Suite

Concept Reference					669675 001	669675 002	669675 003
Customer Sample Reference \$					Seabed 0.1m	Seabed 0.5m	Seabed 0.8m
Determinand	Method	Test Sample	LOD	Units			
Arsenic	T740	AR	0.5	mg/kg	7.3	9.0	6.5
Cadmium	T740	AR	0.1	mg/kg	0.3	0.3	0.3
Chromium	T740	AR	0.5	mg/kg	380	410	490
Copper	T740	AR	0.5	mg/kg	41	25	37
Lead	T740	AR	0.5	mg/kg	6.4	3.5	4.8
Nickel	T740	AR	0.5	mg/kg	220	190	230
Zinc	T740	AR	1.0	mg/kg	100	77	100
Mercury	T355	AR	0.05	mg/kg	⁽¹³⁾ 0.35	(13) < 0.05	(13) < 0.05
Moisture	T2	AR	0.1	%	20	21	15
PCB (Total Tri-Hepta)	T16	AR	0.05	μg/kg	⁽²⁾ <0.50	<0.05	<0.05
Tributyl tin	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01
PCB EC7 (Sum)	T85	AR	0.35	μg/kg	< 0.35	< 0.35	< 0.35

Sediment Analysed as Sediment

Poly-Chlorinated Biphenyls (ICES 7)

Concept Reference					669675 001	669675 002	669675 003
		Custon	ner Sampl	e Reference	Seabed 0.1m	Seabed 0.5m	Seabed 0.8m
Determinand	Method	Test Sample	LOD	Units			
PCB BZ#28	T1	AR	0.05	μg/kg	< 0.05	<0.05	<0.05
PCB BZ#52	T1	AR	0.05	μg/kg	< 0.05	<0.05	<0.05
PCB BZ#101	T1	AR	0.05	μg/kg	< 0.05	<0.05	<0.05
PCB BZ#118	T1	AR	0.05	μg/kg	< 0.05	<0.05	<0.05
PCB BZ#153	T1	AR	0.05	μg/kg	< 0.05	<0.05	<0.05
PCB BZ#138	T1	AR	0.05	μg/kg	< 0.05	<0.05	<0.05
PCB BZ#180	T1	AR	0.05	μg/kg	<0.05	<0.05	<0.05

Sediment Analysed as Sediment

Total and Speciated USEPA16 PAH

			Conce	ot Reference	669675 001	669675 002	669675 003
		Custon	ner Samp	le Reference	Seabed 0.1m	Seabed 0.5m	Seabed 0.8m
Determinand	Method	Test Sample	LOD	Units			
Naphthalene	T1	AR	2	μg/kg	24	6	11
Acenaphthylene	T1	AR	2	μg/kg	<2	<2	<2
Acenaphthene	T1	AR	2	μg/kg	3	<2	3
Fluorene	T1	AR	2	μg/kg	2	<2	2
Phenanthrene	T1	AR	2	μg/kg	15	<2	<2
Anthracene	T1	AR	2	μg/kg	6	<2	<2
Fluoranthene	T1	AR	2	μg/kg	56	<2	<2
Pyrene	T1	AR	2	μg/kg	48	<2	<2
Benzo(a)Anthracene	T1	AR	2	μg/kg	33	<2	<2
Chrysene	T1	AR	2	μg/kg	33	<2	<2
Benzo(b/k)Fluoranthene	T1	AR	2	μg/kg	47	2	<2
Benzo(a)Pyrene	T1	AR	2	μg/kg	22	<2	<2
Indeno(123-cd)Pyrene	T1	AR	2	μg/kg	11	<2	<2
Dibenzo(ah)Anthracene	T1	AR	2	μg/kg	5	<2	<2
Benzo(ghi)Perylene	T1	AR	2	μg/kg	9	<2	<2
PAH(total)	T1	AR	2	ua/ka	310	8	16

Index to symbols used in 669675-2

Value	Description
AR	As Received
2	LOD Raised Due to Matrix Interference
13	Results have been blank corrected.
N	Analysis is not UKAS accredited

Notes

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised.

Method Index

Value	Description				
T85	Calc				
T740	ICP/MS (HF)				
T16	GC/MS				
T429	GC/MS (Recovery)				
T1	GC/MS (HR)				
T355	CVAFS				
T750	ICP/MS (Recovery)				
T2	Grav				
T434	GC/MS (HR) (Recovery)				

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
PCB BZ#28 Recovery	T434	AR	1	%	N	004
PCB BZ#52 Recovery	T434	AR	1	%	N	004
PCB BZ#101 Recovery	T434	AR	1	%	N	004
PCB BZ#118 Recovery	T434	AR	1	%	N	004
PCB BZ#153 Recovery	T434	AR	1	%	N	004
PCB BZ#138 Recovery	T434	AR	1	%	N	004
PCB BZ#180 Recovery	T434	AR	1	%	N	004
Naphthalene Recovery	T429	AR	1	%	N	004
Acenaphthene Recovery	T429	AR	1	%	N	004
Phenanthrene Recovery	T429	AR	1	%	N	004
Chrysene Recovery	T429	AR	1	%	N	004
Benzo(a)Pyrene Recovery	T429	AR	1	%	N	004
Arsenic	T740	AR	0.5	mg/kg	N	001-003
Cadmium	T740	AR	0.1	mg/kg	N	001-003
Chromium	T740	AR	0.5	mg/kg	N	001-003
Copper	T740	AR	0.5	mg/kg	N	001-003
Lead	T740	AR	0.5	mg/kg	N	001-003
Nickel	T740	AR	0.5	mg/kg	N	001-003
Zinc	T740	AR	1.0	mg/kg	N	001-003
Mercury	T355	AR	0.05	mg/kg	N	001-003
Moisture	T2	AR	0.1	%	N	001-003
PCB (Total Tri-Hepta)	T16	AR	0.05	μg/kg	N	001-003
Tributyl tin	T16	AR	0.01	mg/kg	N	001-003
PCB EC7 (Sum)	T85	AR	0.35	μg/kg	N	001-003
PCB BZ#28	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#52	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#101	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#118	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#153	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#138	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#180	T1	AR	0.05	μg/kg	N	001-003
Naphthalene	T1	AR	2	μg/kg	N	001-003
Acenaphthylene	T1	AR	2	μg/kg	N	001-003
Acenaphthene	T1	AR	2	μg/kg	N	001-003
Fluorene	T1	AR	2	μg/kg	N	001-003
Phenanthrene	T1	AR	2	μg/kg	N	001-003
Anthracene	T1	AR	2	μg/kg	N	001-003
Fluoranthene	T1	AR	2	μg/kg	N	001-003
Pyrene	T1	AR	2	μg/kg	N	001-003

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Benzo(a)Anthracene	T1	AR	2	μg/kg	N	001-003
Chrysene	T1	AR	2	μg/kg	N	001-003
Benzo(b/k)Fluoranthene	T1	AR	2	μg/kg	N	001-003
Benzo(a)Pyrene	T1	AR	2	μg/kg	N	001-003
Indeno(123-cd)Pyrene	T1	AR	2	μg/kg	N	001-003
Dibenzo(ah)Anthracene	T1	AR	2	μg/kg	N	001-003
Benzo(ghi)Perylene	T1	AR	2	μg/kg	N	001-003
PAH(total)	T1	AR	2	μg/kg	N	001-003
As Recovery	T750	AR	1	%	N	005
Cd Recovery	T750	AR	1	%	N	005
Cr Recovery	T750	AR	1	%	N	005
Cu Recovery	T750	AR	1	%	N	005
Ni Recovery	T750	AR	1	%	N	005
Pb Recovery	T750	AR	1	%	N	005
Zn Recovery	T750	AR	1	%	N	005

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences Certificate of Analysis

16 Langlands Place Kelvin South Business Park East Kilbride G75 0YF

Tel: 01355 573340 Fax: 01355 573341

Report Number: 675775-1

Date of Report: 23-Aug-2017

Customer: Holequest

Winston Road Galashiels TD1 2DA

Customer Contact:

Customer Job Reference:

Date Job Received at Concept: 25-Jul-2017

Date Analysis Started: 16-Aug-2017

Date Analysis Completed: 22-Aug-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory. Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs. All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual.

Report checked and authorised by :

Issued by :

Customer Reference:

Soil Analysed as Soil

Soil CWG

	675775 003	675775 008									
Customer Sample Reference TP02 0.0M TP04 0											
Date Sampled 20-JUL-2017 21-JUL-20											
Determinand	Method	Test Sample	LOD	Units							
TPH (C5-C6 aliphatic)	T54	AR	10	μg/kg	<10	<10					
TPH (C6-C8 aliphatic)	T54	AR	10	μg/kg	<10	<10					
TPH (C8-C10 aliphatic)	T54	AR	10	μg/kg	<10	<10					
TPH (C10-C12 aliphatic)	T8	AR	1	mg/kg	<1	<1					
TPH (C12-C16 aliphatic)	T8	AR	1	mg/kg	<1	<1					
TPH (C16-C21 aliphatic)	T8	AR	1	mg/kg	<1	<1					
TPH (C21-C35 aliphatic)	T8	AR	1	mg/kg	(13) <1	<1					
TPH (C6-C7 aromatic)	T54	AR	10	μg/kg	<10	<10					
TPH (C7-C8 aromatic)	T54	AR	10	μg/kg	<10	<10					
TPH (C8-C10 aromatic)	T54	AR	10	μg/kg	<10	<10					
TPH (C10-C12 aromatic)	T8	AR	1	mg/kg	<1	<1					
TPH (C12-C16 aromatic)	T8	AR	1	mg/kg	<1	<1					
TPH (C16-C21 aromatic)	T8	AR	1	mg/kg	<1	<1					
TPH (C21-C35 aromatic)	T8	AR	1	mg/kg	<1	<1					

Customer Reference:

Soil Analysed as Soil

Suite Requested

	675775 003	675775 008				
	TP02 0.0M	TP04 0.0M				
	20-JUL-2017	21-JUL-2017				
Determinand	Method	Test Sample	LOD	Units		
Arsenic	T82	A40	2	mg/kg	7	8
Cadmium	T82	A40	1	mg/kg	<1	<1
Chromium	T82	A40	1	mg/kg	52	71
Copper	T82	A40	1	mg/kg	55	43
Lead	T82	A40	3	mg/kg	10	19
Mercury	T82	A40	1	mg/kg	<1	<1
Nickel	T82	A40	1	mg/kg	140	170
Selenium	T82	A40	3	mg/kg	<3	<3
Zinc	T82	A40	1	mg/kg	95	130
pH	T7	A40			8.2	7.7
Asbestos ID	T27	AR			N.D.	N.D.
Organic Matter	T2	A40	0.1	%	1.9	3.8

Customer Reference:

Soil Analysed as Soil

Total and Speciated USEPA16 PAH (EK)

	675775 003	675775 008				
	TP02 0.0M	TP04 0.0M				
	20-JUL-2017	21-JUL-2017				
Determinand	Method	Test Sample	LOD	Units		
Naphthalene	T149	AR	0.01	mg/kg	0.01	0.01
Acenaphthylene	T149	AR	0.01	mg/kg	0.01	<0.01
Acenaphthene	T149	AR	0.01	mg/kg	<0.01	<0.01
Fluorene	T149	AR	0.01	mg/kg	<0.01	<0.01
Phenanthrene	T149	AR	0.01	mg/kg	0.01	<0.01
Anthracene	T149	AR	0.01	mg/kg	0.01	<0.01
Fluoranthene	T149	AR	0.01	mg/kg	0.04	0.01
Pyrene	T149	AR	0.01	mg/kg	0.04	0.01
Benzo(a)Anthracene	T149	AR	0.01	mg/kg	⁽¹³⁾ 0.02	⁽¹³⁾ <0.01
Chrysene	T149	AR	0.01	mg/kg	0.02	0.01
Benzo(b)fluoranthene	T149	AR	0.01	mg/kg	0.04	0.01
Benzo(k)fluoranthene	T149	AR	0.01	mg/kg	0.02	<0.01
Benzo(a)Pyrene	T149	AR	0.01	mg/kg	0.03	0.01
Indeno(123-cd)Pyrene	T149	AR	0.01	mg/kg	0.02	0.01
Dibenzo(ah)Anthracene	T149	AR	0.01	mg/kg	0.01	<0.01
Benzo(ghi)Perylene	T149	AR	0.01	mg/kg	0.03	0.01
PAH(total)	T149	AR	0.01	mg/kg	0.31	0.08

Concept Reference: 675775
Customer Reference:

Soil Analysed as Soil Semi-Volatile Organic Compounds (USEPA 625)(EK)

			•	ot Reference	675775 003	675775 008	675775 011
		Custor		e Reference	TP02 0.0M	TP04 0.0M	SVOC BLANK
			Di	ate Sampled	20-JUL-2017	21-JUL-2017	15-AUG-2017
Determinand	Method	Test Sample	LOD	Units			
Phenol	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Bis (2-chloroethyl) ether	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
2-Chlorophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
1,3-Dichlorobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
1,4-Dichlorobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
1,2-Dichlorobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Bis (2-chloroisopropyl) ether	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
2-methyl phenol	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
3/4-Methylphenol	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Hexachloroethane	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Nitrobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Isophorone	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
2,4-Dimethylphenol	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Bis (2-chloroethoxy) methane	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
2,4-Dichlorophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
1,2,4-Trichlorobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Naphthalene	T16	AR	0.1	mg/kg	0.2	<0.1	<0.1
4-Chloroaniline	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Hexachlorobutadiene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
4-Chloro-3-methylphenol 2-Methylnaphthalene	T16	AR AR	0.1	mg/kg mg/kg	<0.1 <0.1	<0.1 <0.1	<0.1 <0.1
Hexachlorocyclopentadiene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
2,4,6-Trichlorophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
2,4,5-Trichlorophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
2-Chloronaphthalene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
2-Nitroaniline	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Dimethyl phthalate	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
2,6-Dinitrotoluene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	T16	AR	0.1	mg/kg	0.2	<0.1	<0.1
3-Nitroaniline	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Dibenzofuran	T16	AR	0.1	mg/kg	0.1	<0.1	<0.1
2,4-Dinitrotoluene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
2,4-Dinitrophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
2-Nitrophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Diethyl phthalate	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Fluorene	T16	AR	0.1	mg/kg	0.2	<0.1	<0.1
4-Chlorophenyl phenylether	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
4-Nitroaniline	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Azobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
4-Bromophenyl phenylether	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Hexachlorobenzene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Pentachlorophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	T16	AR	0.1	mg/kg	0.9	0.1	<0.1
Anthracene	T16	AR	0.1	mg/kg	0.3	<0.1	<0.1
Carbazole Di p butulahthalata	T16	AR	0.1	mg/kg	0.3	<0.1	<0.1
Di-n-butylphthalate	T16	AR AR	0.1	mg/kg mg/kg	<0.1	<0.1 0.2	<0.1 <0.1
Fluoranthene Pyrene	T16	AR	0.1	mg/kg	1.1 0.9	0.2	<0.1
Butyl benzylphthalate	T16	AR	0.1	mg/kg mg/kg	<0.1	<0.1	<0.1
Benzo(a)Anthracene	T16	AR	0.1	mg/kg	0.5	<0.1	<0.1
4-Nitrophenol	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Chrysene	T16	AR	0.1	mg/kg	0.5	<0.1	<0.1
Bis (2-ethylhexyl)phthalate	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Di-n-octylphthalate	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Benzo(b/k)Fluoranthene	T16	AR	0.1	mg/kg	0.8	0.1	<0.1
Benzo(a)Pyrene	T16	AR	0.1	mg/kg	0.5	<0.1	<0.1
Indeno(123-cd)Pyrene	T16	AR	0.1	mg/kg	0.2	<0.1	<0.1
Dibenzo(ah)Anthracene	T16	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Benzo(ghi)Perylene	T16	AR	0.1	mg/kg	0.3	<0.1	<0.1

Concept Reference: 675775
Customer Reference:

Soil Analysed as Soil Volatile Organic Compounds (USEPA 624)

Concept Reference 675775 003 675775 008

	Customer Sample Reference							
					20-JUL-2017	21-JUL-2017		
Determinand	Method	Test Sample	LOD	Units		•		
Dichlorodifluoromethane	T54	AR	5	μg/kg	<5	<5		
Chloromethane	T54	AR	5	μg/kg	<5	<5		
Vinyl chloride	T54	AR	5	μg/kg	<5	<5		
Bromomethane	T54	AR	5	μg/kg	<5	<5		
Chloroethane	T54	AR	5	μg/kg	<5	<5		
Trichlorofluoromethane	T54	AR	5	μg/kg	<5	<5		
1,1-Dichloroethylene	T54	AR	5	μg/kg	<5	<5		
Dichloromethane	T54	AR	50	μg/kg	<50	<50		
Trans-1,2-Dichloroethene	T54	AR	5	μg/kg	<5	<5		
1,1-Dichloroethane	T54	AR	5	μg/kg	<5	<5		
Cis-1,2-Dichloroethylene	T54	AR	5	μg/kg	<5	<5		
2,2-Dichloropropane	T54	AR	5	μg/kg	<5	<5		
Chloroform	T54	AR	5	μg/kg	<5	<5		
Bromochloromethane	T54	AR	5	μg/kg	<5	<5		
1,1,1-Trichloroethane	T54	AR	5	μg/kg	<5	<5		
1,1-Dichloropropene	T54	AR	5	μg/kg	<5	<5		
Carbon tetrachloride	T54	AR	5	μg/kg	<5	<5		
1,2-Dichloroethane	T54	AR	5	μg/kg	<5	<5		
Benzene	T54	AR	1	μg/kg	(13) <1	(13) <1		
1,2-Dichloropropane	T54	AR	5	μg/kg	<5	<5		
1,1,2-Trichloroethylene	T54	AR	5	μg/kg	<5	<5		
Bromodichloromethane	T54	AR	5	μg/kg	<5	<5		
Dibromomethane	T54	AR	5	μg/kg	<5	<5		
Cis-1,3-Dichloropropene	T54	AR	5	μg/kg	<5	<5		
Toluene	T54	AR	1	μg/kg	<1	<1		
Trans-1,3-Dichloropropene	T54	AR	5	μg/kg	<5	<5		
1,1,2-Trichloroethane	T54	AR	5	μg/kg	<5	<5		
1,3-Dichloropropane	T54	AR	5	μg/kg	<5	<5		
Tetrachloroethene	T54	AR	5	μg/kg	<5	<5		
Chlorodibromomethane	T54	AR	5	μg/kg	<5	<5		
1,2-dibromoethane	T54	AR	5	μg/kg	<5	<5		
Chlorobenzene	T54	AR	5	μg/kg	<5	<5		
1,1,1,2-Tetrachloroethane	T54	AR	5	μg/kg	<5	<5		
EthylBenzene	T54	AR	1	μg/kg	<1	<1		
M/P Xylene	T54	AR	1	μg/kg	<1	<1		
O Xylene	T54	AR	1	μg/kg	<1	<1		
Styrene	T54	AR	5	μg/kg	<5	<5		
Bromoform	T54	AR	5	μg/kg	<5	<5		
Isopropyl benzene	T54	AR	5	μg/kg	<5	<5		
1,1,2,2-Tetrachloroethane	T54	AR	5	μg/kg	<5	<5		
1,2,3-Trichloropropane	T54	AR	5	μg/kg	<5	<5		
n-Propylbenzene	T54	AR	5	μg/kg	<5	<5		
Bromobenzene	T54	AR	5	μg/kg	<5	<5		
1,3,5-Trimethylbenzene	T54	AR	5	μg/kg	<5	<5		
T-Butylbenzene	T54	AR	5	μg/kg	<5	<5		
1,2,4-Trimethylbenzene	T54	AR	5	μg/kg	<5	<5		
S-Butylbenzene	T54	AR	5	μg/kg	<5	<5		
p-Isopropyltoluene	T54	AR	5	μg/kg	<5	<5		
2-Chlorotoluene	T54	AR	5	μg/kg	<5	<5		
4-Chlorotoluene	T54	AR	5	μg/kg	<5	<5		
1,3-Dichlorobenzene	T54	AR	5	μg/kg	<5	<5		
1,4-Dichlorobenzene	T54	AR	5	μg/kg	<5	<5		
1,2-Dichlorobenzene	T54	AR	5	μg/kg	<5	<5		

Index to symbols used in 675775-1

Value	Description
AR	As Received
A40	Assisted dried < 40C
N.D.	Not Detected
13	Results have been blank corrected.
S	Analysis was subcontracted
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

SVOC, PAH and VOC - These samples have been analysed exceeding recommended holding times. It is possible therefore that the results provided may be compromised.

Method Index

Value	Description
T7	Probe
T8	GC/FID
T149	GC/MS (SIR)
T27	PLM
T54	GC/MS (Headspace)
T2	Grav
T82	ICP/OES (Sim)
T16	GC/MS

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Phenol	T16	AR	0.1	mg/kg	U	003,008,011
Bis (2-chloroethyl) ether	T16	AR	0.1	mg/kg	U	003,008,011
2-Chlorophenol	T16	AR	0.1	mg/kg	U	003,008,011
1,3-Dichlorobenzene	T16	AR	0.1	mg/kg	U	003,008,011
1,4-Dichlorobenzene	T16	AR	0.1	mg/kg	U	003,008,011
1,2-Dichlorobenzene	T16	AR	0.1	mg/kg	U	003,008,011
Bis (2-chloroisopropyl) ether	T16	AR	0.1	mg/kg	U	003,008,011
2-methyl phenol	T16	AR	0.1	mg/kg	U	003,008,011
3/4-Methylphenol	T16	AR	0.1	mg/kg	U	003,008,011
Hexachloroethane	T16	AR	0.1	mg/kg	U	003,008,011
Nitrobenzene	T16	AR	0.1	mg/kg	U	003,008,011
Isophorone	T16	AR	0.1	mg/kg	U	003,008,011
2,4-Dimethylphenol	T16	AR	0.1	mg/kg	U	003,008,011
Bis (2-chloroethoxy) methane	T16	AR	0.1	mg/kg	U	003,008,011
2,4-Dichlorophenol	T16	AR	0.1	mg/kg	U	003,008,011
1,2,4-Trichlorobenzene	T16	AR	0.1	mg/kg	U	003,008,011
Naphthalene	T16	AR	0.1	mg/kg	U	003,008,011
4-Chloroaniline	T16	AR	0.1	mg/kg	U	003,008,011
Hexachlorobutadiene	T16	AR	0.1	mg/kg	U	003,008,011
4-Chloro-3-methylphenol	T16	AR	0.1	mg/kg	U	003,008,011
2-Methylnaphthalene	T16	AR	0.1	mg/kg	U	003,008,011
Hexachlorocyclopentadiene	T16	AR	0.1	mg/kg	U	003,008,011
2,4,6-Trichlorophenol	T16	AR	0.1	mg/kg	U	003,008,011
2,4,5-Trichlorophenol	T16	AR	0.1	mg/kg	U	003,008,011
2-Chloronaphthalene	T16	AR	0.1	mg/kg	U	003,008,011
2-Nitroaniline	T16	AR	0.1	mg/kg	U	003,008,011
Dimethyl phthalate	T16	AR	0.1	mg/kg	U	003,008,011
2,6-Dinitrotoluene	T16	AR	0.1	mg/kg	U	003,008,011
Acenaphthylene	T16	AR	0.1	mg/kg	U	003,008,011
Acenaphthene	T16	AR	0.1	mg/kg	U	003,008,011
3-Nitroaniline	T16	AR	0.1	mg/kg	U	003,008,011
Dibenzofuran	T16	AR	0.1	mg/kg	U	003,008,011
2,4-Dinitrophenol	T16	AR	0.1	mg/kg	N	003,008,011
2,4-Dinitrotoluene	T16	AR	0.1	mg/kg	U	003,008,011
2-Nitrophenol	T16	AR	0.1	mg/kg	U	003,008,011
Diethyl phthalate	T16	AR	0.1	mg/kg	U	003,008,011
Fluorene	T16	AR	0.1	mg/kg	U	003,008,011

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
4-Chlorophenyl phenylether	T16	AR	0.1	mg/kg	U	003,008,011
4-Nitroaniline	T16	AR	0.1	mg/kg	U	003,008,011
Azobenzene	T16	AR	0.1	mg/kg	U	003,008,011
4-Bromophenyl phenylether	T16	AR	0.1	mg/kg	U	003,008,011
Hexachlorobenzene	T16	AR	0.1	mg/kg	U	003,008,011
Pentachlorophenol	T16	AR	0.1	mg/kg	U	003,008,011
Phenanthrene	T16	AR	0.1	mg/kg	U	003,008,011
Anthracene	T16	AR	0.1	mg/kg	U	003,008,011
Carbazole Di-n-butylphthalate	T16	AR	0.1	mg/kg	U	003,008,011 003,008,011
Fluoranthene	T16	AR AR	0.1	mg/kg mg/kg	U	003,008,011
Pyrene	T16	AR	0.1	mg/kg	U	003,008,011
Butyl benzylphthalate	T16	AR	0.1	mg/kg	U	003,008,011
Benzo(a)Anthracene	T16	AR	0.1	mg/kg	U	003,008,011
4-Nitrophenol	T16	AR	0.1	mg/kg	N	003,008,011
Chrysene	T16	AR	0.1	mg/kg	U	003,008,011
Bis (2-ethylhexyl)phthalate	T16	AR	0.1	mg/kg	U	003,008,011
Di-n-octylphthalate	T16	AR	0.1	mg/kg	U	003,008,011
Benzo(b/k)Fluoranthene	T16	AR	0.1	mg/kg	U	003,008,011
Benzo(a)Pyrene	T16	AR	0.1	mg/kg	U	003,008,011
Indeno(123-cd)Pyrene	T16	AR	0.1	mg/kg	U	003,008,011
Dibenzo(ah)Anthracene	T16	AR	0.1	mg/kg	U	003,008,011
Benzo(ghi)Perylene	T16	AR	0.1	mg/kg	U	003,008,011
TPH (C5-C6 aliphatic)	T54	AR	10	μg/kg	N	003,008
TPH (C6-C8 aliphatic)	T54	AR	10	μg/kg	N	003,008
TPH (C8-C10 aliphatic)	T54	AR	10	μg/kg	N	003,008
TPH (C10-C12 aliphatic)	T8	AR	1	mg/kg	N	003,008
TPH (C12-C16 aliphatic)	T8	AR	1	mg/kg	N	003,008
TPH (C16-C21 aliphatic)	T8	AR	1	mg/kg	N	003,008
TPH (C21-C35 aliphatic)	T8	AR	1	mg/kg	N	003,008
TPH (C6-C7 aromatic)	T54	AR	10	μg/kg	N	003,008
TPH (C2 C10 aromatic)	T54 T54	AR AR	10 10	μg/kg	N N	003,008 003,008
TPH (C8-C10 aromatic) TPH (C10-C12 aromatic)	T8	AR	1	μg/kg mg/kg	N	003,008
TPH (C12-C16 aromatic)	T8	AR	1	mg/kg	N	003,008
TPH (C16-C21 aromatic)	T8	AR	1	mg/kg	N	003,008
TPH (C21-C35 aromatic)	T8	AR	1	mg/kg	N	003,008
Naphthalene	T149	AR	0.01	mg/kg	U	003,008
Acenaphthylene	T149	AR	0.01	mg/kg	U	003,008
Acenaphthene	T149	AR	0.01	mg/kg	U	003,008
Fluorene	T149	AR	0.01	mg/kg	U	003,008
Phenanthrene	T149	AR	0.01	mg/kg	U	003,008
Anthracene	T149	AR	0.01	mg/kg	U	003,008
Fluoranthene	T149	AR	0.01	mg/kg	U	003,008
Pyrene	T149	AR	0.01	mg/kg	U	003,008
Benzo(a)Anthracene	T149	AR	0.01	mg/kg	U	003,008
Chrysene	T149	AR	0.01	mg/kg	U	003,008
Benzo(b)fluoranthene	T149	AR	0.01	mg/kg	U	003,008
Benzo(k)fluoranthene	T149	AR	0.01	mg/kg	U	003,008
Benzo(a)Pyrene	T149	AR	0.01	mg/kg	U	003,008
Indeno(123-cd)Pyrene Dibenzo(ah)Anthracene	T149	AR AR	0.01	mg/kg mg/kg	U	003,008 003,008
Benzo(ghi)Perylene	T149	AR	0.01		U	003,008
PAH(total)	T149	AR	0.01	mg/kg mg/kg	U	003,008
Arsenic	T82	A40	2	mg/kg	U	003,008
Cadmium	T82	A40 A40	1	mg/kg	U	003,008
Chromium	T82	A40	1	mg/kg	U	003,008
Copper	T82	A40	1	mg/kg	U	003,008
Lead	T82	A40	3	mg/kg	U	003,008
Mercury	T82	A40	1	mg/kg	U	003,008
Nickel	T82	A40	1	mg/kg	U	003,008
Selenium	T82	A40	3	mg/kg	U	003,008
Zinc	T82	A40	1	mg/kg	U	003,008
pH	T7	A40			U	003,008
Asbestos ID	T27	AR			SU	003,008
Organic Matter	T2	A40	0.1	%	N	003,008
Dichlorodifluoromethane	T54	AR	5	μg/kg	U	003,008
Chloromethane	T54	AR	5	μg/kg	U	003,008
Vinyl chloride	T54	AR	5	μg/kg	U	003,008
Bromomethane	T54	AR	5	μg/kg	U	003,008

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Chloroethane	T54	AR	5	μg/kg	U	003,008
Trichlorofluoromethane	T54	AR	5	μg/kg	U	003,008
1,1-Dichloroethylene	T54	AR	5	μg/kg	U	003,008
Dichloromethane	T54	AR	50	μg/kg	N	003,008
Trans-1,2-Dichloroethene	T54	AR	5	μg/kg	U	003,008
1,1-Dichloroethane	T54	AR	5	μg/kg	U	003,008
Cis-1,2-Dichloroethylene	T54	AR	5	μg/kg	U	003,008
2,2-Dichloropropane	T54	AR	5	μg/kg	U	003,008
Chloroform	T54	AR	5	μg/kg	U	003,008
Bromochloromethane	T54	AR	5	μg/kg	U	003,008
1,1,1-Trichloroethane	T54	AR	5	μg/kg	U	003,008
1,1-Dichloropropene	T54	AR	5	μg/kg	U	003,008
Carbon tetrachloride	T54	AR	5	μg/kg	U	003,008
1,2-Dichloroethane	T54	AR	5	μg/kg	U	003,008
Benzene	T54	AR	1	μg/kg	U	003,008
1,2-Dichloropropane	T54	AR	5	μg/kg	U	003,008
1,1,2-Trichloroethylene	T54	AR	5	μg/kg	U	003,008
Bromodichloromethane	T54	AR	5	μg/kg	U	003,008
Dibromomethane	T54	AR	5	μg/kg	U	003,008
Cis-1,3-Dichloropropene	T54	AR	5	μg/kg	U	003,008
Toluene	T54	AR	1	μg/kg	U	003,008
Trans-1,3-Dichloropropene	T54	AR	5	μg/kg	U	003,008
1,1,2-Trichloroethane	T54	AR	5	μg/kg	U	003,008
1,3-Dichloropropane	T54	AR	5	μg/kg	U	003,008
Tetrachloroethene	T54	AR	5	μg/kg	U	003,008
Chlorodibromomethane	T54	AR	5	μg/kg	U	003,008
1,2-dibromoethane	T54	AR	5	μg/kg	U	003,008
Chlorobenzene	T54	AR	5	μg/kg	U	003,008
1,1,1,2-Tetrachloroethane	T54	AR	5	μg/kg	U	003,008
EthylBenzene	T54	AR	1	μg/kg	U	003,008
M/P Xylene	T54	AR	1	μg/kg	U	003,008
O Xylene	T54	AR	1	μg/kg	U	003,008
Styrene	T54	AR	5	μg/kg	U	003,008
Bromoform	T54	AR	5	μg/kg	U	003,008
Isopropyl benzene	T54	AR	5	μg/kg	U	003,008
1,1,2,2-Tetrachloroethane	T54	AR	5	μg/kg	U	003,008
1,2,3-Trichloropropane	T54	AR	5	μg/kg	U	003,008
n-Propylbenzene	T54	AR	5	μg/kg	U	003,008
Bromobenzene	T54	AR	5	μg/kg	U	003,008
1,3,5-Trimethylbenzene	T54	AR	5	μg/kg	U	003,008
T-Butylbenzene	T54	AR	5	μg/kg	U	003,008
1,2,4-Trimethylbenzene	T54	AR	5	μg/kg	U	003,008
S-Butylbenzene	T54	AR	5	μg/kg	U	003,008
p-Isopropyltoluene	T54	AR	5		U	003,008
2-Chlorotoluene	T54	AR	5	μg/kg μg/kg	U	003,008
4-Chlorotoluene	T54	AR	5		U	003,008
1,3-Dichlorobenzene	T54	AR	5	μg/kg	U	003,008
1,4-Dichlorobenzene	T54	AR	5	μg/kg	U	003,008
	T54	AR	5	μg/kg	U	
1,2-Dichlorobenzene	154	AH	5	μg/kg	U	003,008

Concept Life Sciences Certificate of Analysis

16 Langlands Place Kelvin South Business Park East Kilbride G75 0YF

Tel: 01355 573340 Fax: 01355 573341

Report Number: 675785-1

Date of Report: 23-Aug-2017

Customer: Holequest

Winston Road Galashiels TD1 2DA

Customer Contact:

Customer Job Reference:

Date Job Received at Concept: 25-Jul-2017

Date Analysis Started: 16-Aug-2017

Date Analysis Completed: 22-Aug-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. This report should not be reproduced except in full without the written approval of the laboratory. Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs. All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual.

Report checked and authorised by :

Issued by :

Waste Acceptance Criteria

Customer Sample Reference: TP01 0.0M SAL Sample Reference: 675785 001 Test Portion Mass (g): 175 Date Sampled: Deviating

Soil Summary								
Determinand	Technique	LOD	Units	Symbol				
PAH (Sum)	Calc	1.6	mg/kg	N	<1.6			
TPH C10-C40 (sum)	Calc	1	mg/kg	N	(100) < 10			
BTEX (Sum)	Calc	0.0040	mg/kg	U	(13) < 0.0040			
PCB EC7 (Sum)	Calc	0.00035	mg/kg	U	< 0.030			
Total Organic Carbon	OX/IR	0.1	%	N	1.7			
pH	Probe			U	8.2			
Loss on Ignition	Grav	0.1	%	N	6.2			

Inert Waste Landfill	Stable non reactive	Hazardous Waste Landfill	
100.0			
500.0			
6.0			
1.0			
3.0	5.0	6.0	
	>6.0		
		10.0	

	10:1 Leachate			Result	Inert Waste Landfill	Stable non reactive	Hazardous Waste Landfill	
Determinand	Technique	LOD	Units	Symbol	14 July 18			
Antimony (Dissolved)	Calc / ICP/MS (Filtered)	0.010	mg/kg	N	0.024	0.06	0.7	5.0
Arsenic (Dissolved)	Calc / ICP/MS (Filtered)	0.0021	mg/kg	N	0.21	0.5	2.0	25.0
Barium (Dissolved)	Calc / ICP/MS (Filtered)	0.010	mg/kg	N	0.54	20.0	100.0	300.0
Cadmium (Dissolved)	Calc / ICP/MS (Filtered)	0.010	mg/kg	N	<0.010	0.04	1.0	5.0
Chromium (Dissolved)	Calc / ICP/MS (Filtered)	0.010	mg/kg	N	<0.010	0.5	10.0	70.0
Copper (Dissolved)	Calc / ICP/MS (Filtered)	0.010	mg/kg	N	<0.010	2.0	50.0	100.0
Lead (Dissolved)	Calc / ICP/MS (Filtered)	0.0031	mg/kg	N	<0.0031	0.5	10.0	50.0
Mercury (Dissolved)	Calc / ICP/MS (Filtered)	0.0021	mg/kg	N	<0.0021	0.01	0.2	2.0
Molybdenum (Dissolved)	Calc / ICP/MS (Filtered)	0.052	mg/kg	N	0.48	0.5	10.0	30.0
Nickel (Dissolved)	Calc / ICP/MS (Filtered)	0.010	mg/kg	N	0.045	0.4	10.0	40.0
Selenium (Dissolved)	Calc / ICP/MS (Filtered)	0.0052	mg/kg	N	0.0056	0.1	0.5	7.0
Zinc (Dissolved)	Calc / ICP/MS (Filtered)	0.021	mg/kg	N	0.14	4.0	50.0	200.0
Chloride	Calc / Discrete Analyser	10	mg/kg	N	23000	800.0	15000.0	25000.0
Fluoride	Calc / Discrete Analyser	0.52	mg/kg	N	9.1	10.0	150.0	500.0
Sulphate	Calc / Discrete Analyser	5.2	mg/kg	N	1400	1000.0	20000.0	50000.0
Dissolved Organic Carbon	Calc / OX/IR	10	mg/kg	N	290	500.0	800.0	1000.0
Phenols(Mono)	Calc / Colorimetry	1.0	mg/kg	N	<1.0	1.0		
Total Dissolved Solids	Calc	100	mg/kg	N	46000	4000.0	60000.0	100000.0

From: Criteria set by European Council Decision 2003/33/EC(2) pursuant to Directive 1999/31/EC(3) and implemented in Scotland by The Landfill (Scotland) Regulations 2003
The 2:1 moisture extract was not produced because the moisture content of the sample was greater than 200%. Therefore, the exact application of the two-step leaching test is precluded on technical grounds (ref: Section 5.2.4 BS EN 12457-3:2002). Results are derived from a single step leaching at L/S 10/1 as prescribed by the EA guidance. (Ref Section C4.1.1 Guidance on Sampling and Testing of Wastes to meet Landfill Waste Acceptance Procedures Version 1 April 2005, Environment Agency)

Notes:- Cumulative release at L/S=10 (mg/kg of dry matter) in accordance with BS EN 12457. Soil leaching procedure is not covered by our UKAS accreditation

As detailed in- Waste Classification. Guidance on the classification and assessment of waste. Technical Guidance WM3:

 $https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/427077/LIT_10121.pdf in the control of the control$

Landfill WAC analysis (specifically leaching test results) should not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Waste Acceptance Criteria

Customer Sample Reference : TP03 1.0M SAL Sample Reference : 675785 002 Test Portion Mass (g) : 175 Date Sampled : Deviating

Soil Summary								
Determinand	Technique	LOD	Units	Symbol				
PAH (Sum)	Calc	1.6	mg/kg	N	<1.6			
TPH C10-C40 (sum)	Calc	1	mg/kg	N	<1			
BTEX (Sum)	Calc	0.0040	mg/kg	U	(13) 0.020			
PCB EC7 (Sum)	Calc	0.00035	mg/kg	U	< 0.030			
Total Organic Carbon	OX/IR	0.1	%	N	1.5			
pH	Probe			U	8.8			
Loss on Ignition	Grav	0.1	%	N	3.0			

Inert Waste Landfill	Stable non reactive	Hazardous Waste Landfill
100.0		
500.0		
6.0		
1.0		
3.0	5.0	6.0
	>6.0	
		10.0

	10:1 Leachate			Result	Inert Waste Landfill	Stable non reactive	Hazardous Waste Landfill	
Determinand	Technique	LOD	Units	Symbol	400			
Antimony (Dissolved)	Calc / ICP/MS (Filtered)	0.010	mg/kg	N	<0.010	0.06	0.7	5.0
Arsenic (Dissolved)	Calc / ICP/MS (Filtered)	0.0020	mg/kg	N	0.043	0.5	2.0	25.0
Barium (Dissolved)	Calc / ICP/MS (Filtered)	0.010	mg/kg	N	0.11	20.0	100.0	300.0
Cadmium (Dissolved)	Calc / ICP/MS (Filtered)	0.010	mg/kg	N	<0.010	0.04	1.0	5.0
Chromium (Dissolved)	Calc / ICP/MS (Filtered)	0.010	mg/kg	N	<0.010	0.5	10.0	70.0
Copper (Dissolved)	Calc / ICP/MS (Filtered)	0.010	mg/kg	N	<0.010	2.0	50.0	100.0
Lead (Dissolved)	Calc / ICP/MS (Filtered)	0.0030	mg/kg	N	<0.0030	0.5	10.0	50.0
Mercury (Dissolved)	Calc / ICP/MS (Filtered)	0.0020	mg/kg	N	<0.0020	0.01	0.2	2.0
Molybdenum (Dissolved)	Calc / ICP/MS (Filtered)	0.050	mg/kg	N	<0.050	0.5	10.0	30.0
Nickel (Dissolved)	Calc / ICP/MS (Filtered)	0.010	mg/kg	N	<0.010	0.4	10.0	40.0
Selenium (Dissolved)	Calc / ICP/MS (Filtered)	0.0050	mg/kg	N	0.020	0.1	0.5	7.0
Zinc (Dissolved)	Calc / ICP/MS (Filtered)	0.020	mg/kg	N	<0.020	4.0	50.0	200.0
Chloride	Calc / Discrete Analyser	10	mg/kg	N	25	800.0	15000.0	25000.0
Fluoride	Calc / Discrete Analyser	0.50	mg/kg	N	0.50	10.0	150.0	500.0
Sulphate	Calc / Discrete Analyser	5.0	mg/kg	N	180	1000.0	20000.0	50000.0
Dissolved Organic Carbon	Calc / OX/IR	10	mg/kg	N	16	500.0	800.0	1000.0
Phenols(Mono)	Calc / Colorimetry	1.0	mg/kg	N	<1.0	1.0		
Total Dissolved Solids	Calc	100	mg/kg	N	880	4000.0	60000.0	100000.0

From: Criteria set by European Council Decision 2003/33/EC(2) pursuant to Directive 1999/31/EC(3) and implemented in Scotland by The Landfill (Scotland) Regulations 2003
Note:- Sample failed to produce sufficient eluate within the specified time after vacuum filtration for 1 hour and centrifugation for 30 minutes. Therefore, the exact application of the
two-step leaching test is precluded on technical grounds. (ref: Section 5.2.4 BS EN 12457-3:2002) Results are derived from a single step leaching at L/S 10/1 as prescribed by the EA
guidance. (Ref Section C4.1.1 Guidance on Sampling and Testing of Wastes to meet Landfill Waste Acceptance Procedures Version 1 April 2005, Environment Agency)
Notes:- Cumulative release at L/S=10 (mg/kg of dry matter) in accordance with BS EN 12457. Soil leaching procedure is not covered by our UKAS accreditation

As detailed in- Waste Classification. Guidance on the classification and assessment of waste. Technical Guidance WM3:

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/427077/LIT_10121.pdf

Landfill WAC analysis (specifically leaching test results) should not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Index to symbols used in 675785-1

Value	Description
AR	As Received
2:1	Leachate to BS EN 12457-3 (2:1)
8:1	Leachate to BS EN 12457-3 (8:1)
A40	Assisted dried < 40C
100	LOD determined by sample aliquot used for analysis
13	Results have been blank corrected.
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

GC/MS Headspace - LOD raised as samples diluted due to poor internal standard recovery.

PAH soil - These samples have been analysed exceeding recommended holding times. It is possible therefore that the results provided may be compromised.

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised.

Concept Life Sciences Certificate of Analysis

16 Langlands Place Kelvin South Business Park East Kilbride G75 0YF

Tel: 01355 573340 Fax: 01355 573341

Report Number: 676021-1

Date of Report: 24-Aug-2017

Customer: Holequest

Winston Road Galashiels TD1 2DA

Customer Contact: Mr Craig Rodger

Customer Job Reference: 17/035

Customer Site Reference: UIG Harbour Redevelopment

Date Job Received at Concept: 15-Aug-2017

Date Analysis Started: 16-Aug-2017

Date Analysis Completed: 22-Aug-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation
This report should not be reproduced except in full without the written approval of the laboratory
Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs
All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical

Services Quality Manual

Report checked and authorised by :

Issued by:

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Soil Analysed as Soil

Miscellaneous

			Concep	t Reference	676021 009	676021 010
		Custon	ner Sampl	e Reference	BH6A 0.00M	BH6A 0.50M
		•	Da	ate Sampled	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units		
0 : 14 ::	т.	4.40				

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Soil Analysed as Soil

Soil Suite

	Concept Reference					676021 002	676021 003	676021 004	676021 005
Customer Sample Reference					BH1 0.00M	BH1 5.80M	BH1 10.30M	BH8A 1.00M	BH8A 5.30M
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating	
Determinand	Method	Test Sample	LOD	Units					
Leach Prep (2:1)	T2	AR			Extracted	Extracted	Extracted	Extracted	Extracted
pН	T7	A40			8.9	9.0	8.6	9.1	8.1
(Acid Soluble) SO4	T192	AR	0.01	%	0.16	0.14	0.26	0.16	0.53
Sulphur (total)	T6	A40	0.01	%	0.09	0.19	0.34	0.14	1.7

Concept Reference: 676021

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Soil Analysed as Soil

Soil Suite

Son Suite								
			Conce	676021 006	676021 007	676021 008	676021 009	
	Customer Sample Reference				BH9 0.90M	BH9 3.80M	BH9 9.10M	BH6A 0.00M
			D	ate Sampled	Deviating	Deviating	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units				
Leach Prep (2:1)	T2	AR	193		Extracted	Extracted	Extracted	Extracted
рН	T7	A40			8.9	7.9	8.1	9.3
(Acid Soluble) SO4	T192	AR	0.01	%	0.17	0.76	0.37	0.35
Sulphur (total)	T6	A40	0.01	%	0.18	1.7	0.48	0.77

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Leachate 2:1

Analysed as Water

Suite A

			Concep	t Reference	676021 001	676021 002	676021 003	676021 004	676021 005
	Custon	ner Sampl	e Reference	BH1 0.00M	BH1 5.80M	BH1 10.30M	BH8A 1.00M	BH8A 5.30M	
	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating			
Determinand	Method	Test Sample	LOD	Units					
Ammonia expressed as NH4	T686	2:1	0.05	mg/l	<0.05	<0.05	0.43	<0.05	1.5
Chloride	T686	2:1	1	mg/l	920	1100	2400	1300	2200
Magnesium	T82	2:1	1	mg/l	24	35	210	28	170
Nitrate	T686	2:1	0.5	mg/l	<0.5	<0.5	<0.5	<0.5	1.7
Dissolved SO4(Total)	T285	2:1	10	mg/l	491	379	844	374	1397

Concept Reference: 676021

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Leachate 2:1

Analysed as Water

Suite A

			Conce	ot Reference	676021 006	676021 007	676021 008	676021 009
		Custon	ner Samp	le Reference	BH9 0.90M	BH9 3.80M	BH9 9.10M	BH6A 0.00M
			D	ate Sampled	Deviating	Deviating	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units				
Ammonia expressed as NH4	T686	2:1	0.05	mg/l	<0.05	3.2	2.2	2.1
Chloride	T686	2:1	1	mg/l	2100	1900	570	2300
Magnesium	T82	2:1	1	mg/l	44	160	220	5
Nitrate	T686	2:1	0.5	mg/l	<0.5	<0.5	<0.5	<0.5
Dissolved SO4(Total)	T285	2:1	10	ma/l	646	1900	1199	381

Index to symbols used in 676021-1

Value	Description
AR	As Received
2:1	Leachate 2:1
A40	Assisted dried < 40C
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised.

Method Index

Value	Description
T7	Probe
T2	Grav
T686	Discrete Analyser
T6	ICP/OES
T82	ICP/OES (Sim)
T192	HCI Extraction/ICP/OES (TRL 447 T2)
T285	ICP/OES (SIM) (Filtered)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Organic Matter	T2	A40	0.1	%	N	009-010
Leach Prep (2:1)	T2	AR			N	001-009
pH	T7	A40		Water land	U	001-009
(Acid Soluble) SO4	T192	AR	0.01	%	N	001-009
Sulphur (total)	T6	A40	0.01	%	N	001-009
Ammonia expressed as NH4	T686	2:1	0.05	mg/l	U	001-009
Chloride	T686	2:1	1	mg/l	U	001-009
Magnesium	T82	2:1	1	mg/l	N	001-009
Nitrate	T686	2:1	0.5	mg/l	U	001-009
Dissolved SO4(Total)	T285	2:1	10	mg/l	N	001-009

Concept Life Sciences Certificate of Analysis

16 Langlands Place Kelvin South Business Park East Kilbride G75 0YF

Tel: 01355 573340 Fax: 01355 573341

Report Number: Supplement to previous report number

677646-2

Date of Report: 18-Apr-2018

Customer: Holequest

Winston Road Galashiels TD1 2DA

Customer Contact:

Customer Job Reference: 17/035 Customer Purchase Order: 17244

Customer Site Reference: UIG Harbour Redevelopment, Skye

Date Job Received at Concept: 22-Aug-2017

Date Analysis Started: 24-Aug-2017

Date Analysis Completed: 05-Sep-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs

All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by :

Issued by:

Project Site: UIG Harbour Redevelopment, Skye

Customer Reference: 17/035

Sediment Analysed as Sediment

Metals Matrix Spike

			677646 001	677646 002	677646 003		
		Custor	BH1 0.00M	BH1 0.50-2.00M	BH1 2.00-3.50M		
			18-AUG-2017	18-AUG-2017	18-AUG-2017		
Determinand	Method	Test Sample	LOD	Units			
As Recovery	T750	AR	1	%	100	100	100
Cd Recovery	T750	AR	1	%	100	100	100
Cr Recovery	T750	AR	1	%	100	100	100
Cu Recovery	T750	AR	1	%	100	100	100
Ni Recovery	T750	AR	1	%	100	100	100
Pb Recovery	T750	AR	1	%	100	100	100
Zn Recovery	T750	AR	1	%	100	100	100

Project Site: UIG Harbour Redevelopment, Skye

Customer Reference: 17/035

Soil

Analysed as Soil

PAH Matrix Spike

	677646 005											
Customer Sample Reference Matr												
	18-AUG-2017											
Determinand												
Naphthalene Recovery	T429	AR	1	%	100							
Acenaphthene Recovery	T429	AR	1	%	100							
Phenanthrene Recovery	T429	AR	1	%	100							
Chrysene Recovery	T429	AR	1	%	99							
Benzo(a)Pyrene Recovery	T429	AR	1	%	90							

Project Site: UIG Harbour Redevelopment, Skye

Customer Reference: 17/035

Soil Analysed as Soil

PCB Matrix Spike

	677646 005				
	Matrix Spikes				
	18-AUG-2017				
Determinand					
PCB BZ#28 Recovery	T434	AR	1	%	98
PCB BZ#52 Recovery	T434	AR	1	%	98
PCB BZ#101 Recovery	T434	AR	1	%	92
PCB BZ#118 Recovery	T434	AR	1	%	94
PCB BZ#153 Recovery	T434	AR	1	%	100
PCB BZ#138 Recovery	T434	AR	1	%	96
PCB BZ#180 Recovery	T434	AR	1	%	100

Project Site: UIG Harbour Redevelopment, Skye

Customer Reference: 17/035

Sediment Analysed as Sediment

Marine Scotland Suite

			Concep	t Reference	677646 001	677646 002	677646 003
		Custon	BH1 0.00M	BH1 0.50-2.00M	BH1 2.00-3.50N		
			Da	ate Sampled	18-AUG-2017	18-AUG-2017	18-AUG-2017
Determinand	Method	Test Sample	LOD	Units			
Arsenic	T740	AR	0.5	mg/kg	7.3	7.2	8.8
Cadmium	T740	AR	0.1	mg/kg	<0.1	<0.1	<0.1
Chromium	T740	AR	0.5	mg/kg	100	220	120
Copper	T740	AR	0.5	mg/kg	38	42	58
Lead	T740	AR	0.5	mg/kg	3.8	4.6	2.5
Mercury	T355	AR	0.05	mg/kg	(13) < 0.05	(13) < 0.05	(13) < 0.05
Moisture	T2	AR	0.1	%	26	17	6.9
Nickel	T740	AR	0.5	mg/kg	140	240	210
PCB EC7 (Sum)	T85	AR	0.35	μg/kg	<0.35	<0.35	<0.35
PCB (Total Tri-Hepta)	T16	AR	0.05	μg/kg	<0.05	<0.05	<0.05
Tributyl tin	T16	AR	0.01	mg/kg	<0.01	0.02	<0.01
Zinc	T740	AR	1.0	mg/kg	77	96	78

Project Site: UIG Harbour Redevelopment, Skye

Customer Reference: 17/035

Sediment Analysed as Sediment

Poly-Chlorinated Biphenyls (ICES 7)

			677646 001	677646 002	677646 003		
		Custon	ner Sampl	e Reference	BH1 0.00M	BH1 0.50-2.00M	BH1 2.00-3.50M
			ate Sampled	18-AUG-2017	18-AUG-2017	18-AUG-2017	
Determinand	Method	Test Sample	LOD	Units			
PCB BZ#28	T1	AR	0.05	μg/kg	<0.05	<0.05	<0.05
PCB BZ#52	T1	AR	0.05	μg/kg	<0.05	<0.05	<0.05
PCB BZ#101	T1	AR	0.05	μg/kg	<0.05	<0.05	<0.05
PCB BZ#118	T1	AR	0.05	μg/kg	<0.05	<0.05	<0.05
PCB BZ#153	T1	AR	0.05	μg/kg	<0.05	<0.05	<0.05
PCB BZ#138	T1	AR	0.05	μg/kg	<0.05	<0.05	<0.05
PCB BZ#180	T1	AR	0.05	μg/kg	<0.05	<0.05	<0.05

Project Site: UIG Harbour Redevelopment, Skye

Customer Reference: 17/035

Sediment Analysed as Sediment

Total and Speciated USEPA16 PAH

			677646 001	677646 002	677646 003		
		Custon	BH1 0.00M	BH1 0.50-2.00M	BH1 2.00-3.50M		
			Da	ate Sampled	18-AUG-2017	18-AUG-2017	18-AUG-2017
Determinand	Method	Test Sample	LOD	Units			
Naphthalene	T1	AR	2	μg/kg	(13) <2	(13) <2	(13) <2
Acenaphthylene	T1	AR	2	μg/kg	<2	<2	<2
Acenaphthene	T1	AR	2	μg/kg	<2	<2	<2
Fluorene	T1	AR	2	μg/kg	<2	<2	<2
Phenanthrene	T1	AR	2	μg/kg	(13) 3	(13) 2	(13) <2
Anthracene	T1	AR	2	μg/kg	<2	<2	<2
Fluoranthene	T1	AR	2	μg/kg	⁽¹³⁾ 9	⁽¹³⁾ 6	(13) <2
Pyrene	T1	AR	2	μg/kg	⁽¹³⁾ 11	⁽¹³⁾ 6	(13) <2
Benzo(a)Anthracene	T1	AR	2	μg/kg	⁽¹³⁾ 6	(13) 5	(13) <2
Chrysene	T1	AR	2	μg/kg	⁽¹³⁾ 5	(13) 3	(13) <2
Benzo(b/k)Fluoranthene	T1	AR	2	μg/kg	10	9	<2
Benzo(a)Pyrene	T1	AR	2	μg/kg	6	4	6
Indeno(123-cd)Pyrene	T1	AR	2	μg/kg	4	3	<2
Dibenzo(ah)Anthracene	T1	AR	2	μg/kg	<2	<2	<2
Benzo(ghi)Perylene	T1	AR	2	μg/kg	5	3	<2
PAH(total)	T1	AR	2	ug/kg	59	41	6

Index to symbols used in Supplement to previous report number 677646-2

Value	Description								
AR	As Received								
13	Results have been blank corrected.								
N	Analysis is not UKAS accredited								

Notes

Supplemental report issued in order to amend sample 002 Tributyl tin result due to laboratory transcription error.

Method Index

y)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
As Recovery	T750	AR	1	%	N	001-003
Cd Recovery	T750	AR	1	%	N	001-003
Cr Recovery	T750	AR	1	%	N	001-003
Cu Recovery	T750	AR	1	%	N	001-003
Ni Recovery	T750	AR	1	%	N	001-003
Pb Recovery	T750	AR	1	%	N	001-003
Zn Recovery	T750	AR	1	%	N	001-003
Naphthalene Recovery	T429	AR	1	%	N	005
Acenaphthene Recovery	T429	AR	1	%	N	005
Phenanthrene Recovery	T429	AR	1	%	N	005
Chrysene Recovery	T429	AR	1	%	N	005
Benzo(a)Pyrene Recovery	T429	AR	1	%	N	005
PCB BZ#28 Recovery	T434	AR	1	%	N	005
PCB BZ#52 Recovery	T434	AR	1	%	N	005
PCB BZ#101 Recovery	T434	AR	1	%	N	005
PCB BZ#118 Recovery	T434	AR	1	%	N	005
PCB BZ#153 Recovery	T434	AR	1	%	N	005
PCB BZ#138 Recovery	T434	AR	1	%	N	005
PCB BZ#180 Recovery	T434	AR	1	%	N	005
Arsenic	T740	AR	0.5	mg/kg	N	001-003
Cadmium	T740	AR	0.1	mg/kg	N	001-003
Chromium	T740	AR	0.5	mg/kg	N	001-003
Copper	T740	AR	0.5	mg/kg	N	001-003
Lead	T740	AR	0.5	mg/kg	N	001-003
Mercury	T355	AR	0.05	mg/kg	N	001-003
Moisture	T2	AR	0.1	%	N	001-003
Nickel	T740	AR	0.5	mg/kg	N	001-003
PCB EC7 (Sum)	T85	AR	0.35	μg/kg	N	001-003
PCB (Total Tri-Hepta)	T16	AR	0.05	μg/kg	N	001-003
Tributyl tin	T16	AR	0.01	mg/kg	N	001-003
Zinc	T740	AR	1.0	mg/kg	N	001-003
PCB BZ#28	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#52	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#101	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#118	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#153	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#138	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#180	T1	AR	0.05	μg/kg	N	001-003
Naphthalene	T1	AR	2	μg/kg	N	001-003
Acenaphthylene	T1	AR	2	μg/kg	N	001-003

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Acenaphthene	T1	AR	2	μg/kg	N	001-003
Fluorene	T1	AR	2	μg/kg	N	001-003
Phenanthrene	T1	AR	2	μg/kg	N	001-003
Anthracene	T1	AR	2	μg/kg	N	001-003
Fluoranthene	T1	AR	2	μg/kg	N	001-003
Pyrene	T1	AR	2	μg/kg	N	001-003
Benzo(a)Anthracene	T1	AR	2	μg/kg	N	001-003
Chrysene	T1	AR	2	μg/kg	N	001-003
Benzo(b/k)Fluoranthene	T1	AR	2	μg/kg	N	001-003
Benzo(a)Pyrene	T1	AR	2	μg/kg	N	001-003
Indeno(123-cd)Pyrene	T1	AR	2	μg/kg	N	001-003
Dibenzo(ah)Anthracene	T1	AR	2	μg/kg	N	001-003
Benzo(ghi)Perylene	T1	AR	2	μg/kg	N	001-003
PAH(total)	T1	AR	2	μg/kg	N	001-003

Concept Life Sciences Certificate of Analysis

16 Langlands Place Kelvin South Business Park East Kilbride G75 0YF

Tel: 01355 573340 Fax: 01355 573341

Report Number: 681125-2

Date of Report: 20-Sep-2017

Customer: Holequest

Winston Road Galashiels TD1 2DA

Customer Contact:

Customer Job Reference: 17/035 Customer Purchase Order: 17257

Customer Site Reference: UIG Harbour Redevelopment

Date Job Received at Concept: 07-Sep-2017

Date Analysis Started: 08-Sep-2017

Date Analysis Completed: 20-Sep-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs

All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by :

Issued by:

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Soil Analysed as Soil

Soil Suite

	681125 001									
	BH2 @0.0									
	18-AUG-2017									
Determinand	Determinand Method Test Sample LOD Units									
Leach Prep (2:1)	T2	AR			Extracted					
pH	T7	8.1								
(Acid Soluble) SO4	T192	0.17								
Sulphur (total)	T6	A40	0.01	%	0.18					

Concept Reference: 681125

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Analysed as Water

Suite A

		Customer Sample Reference								
	18-AUG-2017									
Determinand Method Test Sample LOD Units										
Ammonia expressed as NH4	T686	2:1	0.05	mg/l	1.2					
Chloride	T686	2:1	1	mg/l	2300					
Magnesium	T82	2:1	1	mg/l	68					
Nitrate	T686	2:1	0.5	mg/l	<0.5					
Dissolved SO4(Total)	T285	2:1	10	ma/l	494					

Concept Reference 681125 001

Index to symbols used in 681125-2

Value	Description
A40	Assisted dried < 40C
2:1	Leachate 2:1
AR	As Received
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Method Index

Value	Description
T7	Probe
T2	Grav
T82	ICP/OES (Sim)
T686	Discrete Analyser
T192	HCI Extraction/ICP/OES (TRL 447 T2)
T6	ICP/OES
T285	ICP/OES (SIM) (Filtered)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Leach Prep (2:1)	T2	AR			N	001
pH	T7	A40			U	001
(Acid Soluble) SO4	T192	AR	0.01	%	N	001
Sulphur (total)	T6	A40	0.01	%	N	001
Ammonia expressed as NH4	T686	2:1	0.05	mg/l	U	001
Chloride	T686	2:1	1	mg/l	U	001
Magnesium	T82	2:1	1	mg/l	N	001
Nitrate	T686	2:1	0.5	mg/l	U	001
Dissolved SO4(Total)	T285	2:1	10	mg/l	N	001

Concept Life Sciences Certificate of Analysis

16 Langlands Place Kelvin South Business Park East Kilbride G75 0YF

Tel: 01355 573340 Fax: 01355 573341

Report Number: 681797-1

Date of Report: 20-Sep-2017

Customer: Holequest

Winston Road Galashiels TD1 2DA

Customer Contact:

Customer Job Reference: 17/035 Customer Purchase Order: 17266

Customer Site Reference: Uig Harbour, Redevelopment

Date Job Received at Concept: 11-Sep-2017

Date Analysis Started: 12-Sep-2017

Date Analysis Completed: 20-Sep-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs

All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by :

Issued by :

Project Site: Uig Harbour, Redevelopment

Customer Reference: 17/035

Soil Analysed as Soil

Soil Suite

	681797 001	681797 002				
	BH6A 7.50m	BH2 6.50m				
	Deviating	Deviating				
Determinand	Method	Test Sample	LOD	Units		
Leach Prep (2:1)	T2	AR			Extracted	Extracted
pН	T7	A40			8.5	9.0
(Acid Soluble) SO4	T192	AR	0.01	%	0.25	0.17
Sulphur (total)	T6	A40	0.01	%	0.55	0.54

Concept Reference: 681797

Project Site: Uig Harbour, Redevelopment

Customer Reference: 17/035

Leachate 2:1 Analysed as Water

Suite A						
			Concep	t Reference	681797 001	681797 002
		Custon	ner Sampl	e Reference	BH6A 7.50m	BH2 6.50m
			Da	ate Sampled	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units	1600	
Ammonia expressed as NH4	T686	2:1	0.05	mg/l	0.16	0.46
Chloride	T686	2:1	1	mg/l	1900	1700
Magnesium	T82	2:1	1	mg/l	49	32
Nitrate	T686	2:1	0.5	mg/l	<0.5	<0.5
Dissolved SO4(Total)	T285	2:1	10	mg/l	549	436

Index to symbols used in 681797-1

Value	Description
A40	Assisted dried < 40C
2:1	Leachate 2:1
AR	As Received
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised.

Method Index

Value	Description
T2	Grav
T192	HCI Extraction/ICP/OES (TRL 447 T2)
T7	Probe
T6	ICP/OES
T285	ICP/OES (SIM) (Filtered)
T82	ICP/OES (Sim)
T686	Discrete Analyser

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Leach Prep (2:1)	T2	AR			N	001-002
pH	T7	A40			U	001-002
(Acid Soluble) SO4	T192	AR	0.01	%	N	001-002
Sulphur (total)	T6	A40	0.01	%	N	001-002
Ammonia evoressed as NH4	T686	2.1	0.05	ma/l	- 11	001-002

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Chloride	T686	2:1	1	mg/l	U	001-002
Magnesium	T82	2:1	1	mg/l	N	001-002
Nitrate	T686	2:1	0.5	mg/l	U	001-002
Dissolved SO4(Total)	T285	2:1	10	mg/l	N	001-002

Concept Life Sciences Certificate of Analysis

16 Langlands Place Kelvin South Business Park East Kilbride G75 0YF

Tel: 01355 573340 Fax: 01355 573341

Report Number: 683576-1

Date of Report: 28-Sep-2017

Customer: Holequest

Winston Road Galashiels TD1 2DA

Customer Contact:

Customer Job Reference: 17/035 Customer Purchase Order: 17285

Customer Site Reference: UIG Harbour Redevelopment

Date Job Received at Concept: 19-Sep-2017

Date Analysis Started: 20-Sep-2017

Date Analysis Completed: 28-Sep-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation

This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs

All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by :

Issued by :

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Soil Analysed as Soil

Miscellaneous

		683576 001	683576 004	683576 005			
		BH3 4.50m	BH4 5.0m	BH5 4.5m			
		Deviating	Deviating	Deviating			
Determinand	Determinand Method Test Sample LOD Units						
Organic Matter	T2	A40	0.1	%	2.6	5.0	7.6

Concept Reference: 683576

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Soil		Analysed	as Soil			
Soil Suite						
			Concep	ot Reference	683576 002	683576 003
		Custon	ner Sampl	e Reference	BH3 7.50m	BH4 0.0m
			D	Deviating	Deviating	
Determinand	Method	Test Sample	LOD	Units		
Leach Prep (2:1)	T2	AR			Extracted	Extracted
pН	T7	A40			9.9	9.2
(Acid Soluble) SO4	T192	AR	0.01	%	0.06	0.12
Sulphur (total)	T6	A40	0.01	%	1.0	0.27

Concept Reference: 683576

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Leachate 2:1 Analysed as Water

Suite A

	683576 002	683576 003					
	BH3 7.50m	BH4 0.0m					
	Date Sampled						
Determinand	Method	Test Sample	LOD	Units			
Ammonia expressed as NH4	T686	2:1	0.05	mg/l	0.23	<0.05	
Chloride	T686	2:1	1	mg/l	180	580	
Magnesium	T82	2:1	1	mg/l	<1	4	
Nitrate	T686	2:1	0.5	mg/l	<0.5	<0.5	
Dissolved SO4(Total)	T285	2:1	10	ma/l	159	245	

Index to symbols used in 683576-1

Value	Description
A40	Assisted dried < 40C
AR	As Received
2:1	Leachate 2:1
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised.

Method Index

Value	Description						
T7	Probe						
T285	ICP/OES (SIM) (Filtered)						
T686	Discrete Analyser						

T192	HCl Extraction/ICP/OES (TRL 447 T2)
T82	ICP/OES (Sim)
T2	Grav
T6	ICP/OES

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Organic Matter	T2	A40	0.1	%	N	001,004-005
Leach Prep (2:1)	T2	AR			N	002-003
pH	T7	A40			U	002-003
(Acid Soluble) SO4	T192	AR	0.01	%	N	002-003
Sulphur (total)	T6	A40	0.01	%	N	002-003
Ammonia expressed as NH4	T686	2:1	0.05	mg/l	U	002-003
Chloride	T686	2:1	1	mg/l	U	002-003
Magnesium	T82	2:1	1	mg/l	N	002-003
Nitrate	T686	2:1	0.5	mg/l	U	002-003
Dissolved SO4(Total)	T285	2:1	10	mg/l	N	002-003

Concept Life Sciences Certificate of Analysis

16 Langlands Place Kelvin South Business Park East Kilbride G75 0YF

Tel: 01355 573340 Fax: 01355 573341

Report Number: 687648-2

Date of Report: 20-Oct-2017

Customer: Holequest

Winston Road Galashiels TD1 2DA

Customer Contact:

Customer Job Reference: 17/035 Customer Purchase Order: 17336

Customer Site Reference: UIG Harbour Redevelopment

Date Job Received at Concept: 06-Oct-2017

Date Analysis Started: 06-Oct-2017

Date Analysis Completed: 20-Oct-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by :

Issued by:

687648-2

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Sediment Analysed as Sediment

Marine Scotland Suite

			687648 001	687648 002	687648 003		
		Custon	BH DS1 0.3m	BH DS1 1.50m	BH DS1 3.0m		
Determinand							
Arsenic	T740	AR	0.5	mg/kg	8.1	6.4	7.0
Cadmium	T740	AR	0.1	mg/kg	0.2	0.2	0.2
Chromium	T740	AR	0.5	mg/kg	310	460	330
Copper	T740	AR	0.5	mg/kg	97	43	62
Lead	T740	AR	0.5	mg/kg	7.6	4.0	3.8
Nickel	T740	AR	0.5	mg/kg	210	260	250
Zinc	T740	AR	1.0	mg/kg	120	100	110
Mercury	T355	AR	0.05	mg/kg	(13) < 0.05	(13) < 0.05	(13)<0.05
Moisture	T2	AR	0.1	%	14	12	11
PCB EC7 (Sum)	T85	AR	0.35	μg/kg	3.53	<0.35	< 0.35
PCB (Total Tri-Hepta)	T16	AR	0.05	μg/kg	9.2	<0.05	<0.05
Tributyl tin	T16	AR	0.01	mg/kg	<0.01	<0.01	<0.01

Concept Reference: 687648

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Sediment Analysed as Sediment

Poly-Chlorinated Biphenyls (ICES 7)

		100	687648 001	687648 002 BH DS1 1.50m	687648 003 BH DS1 3.0m		
		Custon	BH DS1 0.3m				
Determinand	Method	Test Sample	LOD	Units			
PCB BZ#28	T1	AR	0.05	μg/kg	<0.05	<0.05	<0.05
PCB BZ#52	T1	AR	0.05	μg/kg	0.39	<0.05	< 0.05
PCB BZ#101	T1	AR	0.05	μg/kg	0.91	<0.05	< 0.05
PCB BZ#118	T1	AR	0.05	μg/kg	0.74	<0.05	< 0.05
PCB BZ#153	T1	AR	0.05	μg/kg	0.54	<0.05	<0.05
PCB BZ#138	T1	AR	0.05	μg/kg	0.73	<0.05	< 0.05
PCB BZ#180	T1	AR	0.05	μg/kg	0.22	<0.05	<0.05

Concept Reference: 687648

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Sediment Analysed as Sediment

Total and Speciated USEPA16 PAH

			Concep	t Reference	687648 001	687648 002	687648 003
		Custon	ner Sampl	e Reference	BH DS1 0.3m	BH DS1 1.50m	BH DS1 3.0m
Determinand	Method	Test Sample	LOD	Units			7
Naphthalene	T1	AR	2	μg/kg	(13) <2	(13) 3	(13) <2
Acenaphthylene	T1	AR	2	μg/kg	5	34	4
Acenaphthene	T1	AR	2	μg/kg	2	7	<2
Fluorene	T1	AR	2	μg/kg	<2	7	8
Phenanthrene	T1	AR	2	μg/kg	⁽¹³⁾ 21	⁽¹³⁾ 98	⁽¹³⁾ 28
Anthracene	T1	AR	2	μg/kg	11	37	8
Fluoranthene	T1	AR	2	μg/kg	67	340	25
Pyrene	T1	AR	2	μg/kg	62	310	19
Benzo(a)Anthracene	T1	AR	2	μg/kg	⁽¹³⁾ 32	⁽¹³⁾ 150	⁽¹³⁾ 8
Chrysene	T1	AR	2	μg/kg	29	130	8
Benzo(b/k)Fluoranthene	T1	AR	2	μg/kg	65	280	12
Benzo(a)Pyrene	T1	AR	2	μg/kg	36	160	7
Indeno(123-cd)Pyrene	T1	AR	2	μg/kg	22	88	4
Dibenzo(ah)Anthracene	T1	AR	2	μg/kg	6	20	<2
Benzo(ghi)Perylene	T1	AR	2	μg/kg	26	110	4
PAH(total)	T1	AR	2	μg/kg	380	1800	140

Index to symbols used in 687648-2

Value	Description
AR	As Received
13	Results have been blank corrected.
N	Analysis is not UKAS accredited

Notes

PCB and ICP/MS analysis was carried out at Concept Life Sciences Manchester.

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised.

Method Index

Value	Description
T16	GC/MS
T85	Calc
T355	CVAFS
T2	Grav
T1	GC/MS (HR)
T740	ICP/MS (HF)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Arsenic	T740	AR	0.5	mg/kg	N	001-003
Cadmium	T740	AR	0.1	mg/kg	N	001-003
Chromium	T740	AR	0.5	mg/kg	N	001-003
Copper	T740	AR	0.5	mg/kg	N	001-003
Lead	T740	AR	0.5	mg/kg	N	001-003
Nickel	T740	AR	0.5	mg/kg	N	001-003
Zinc	T740	AR	1.0	mg/kg	N	001-003
Mercury	T355	AR	0.05	mg/kg	N	001-003
Moisture	T2	AR	0.1	%	N	001-003
PCB EC7 (Sum)	T85	AR	0.35	μg/kg	N	001-003
PCB (Total Tri-Hepta)	T16	AR	0.05	μg/kg	N	001-003
Tributyl tin	T16	AR	0.01	mg/kg	N	001-003
PCB BZ#28	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#52	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#101	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#118	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#153	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#138	T1	AR	0.05	μg/kg	N	001-003
PCB BZ#180	T1	AR	0.05	μg/kg	N	001-003
Naphthalene	T1	AR	2	μg/kg	N	001-003
Acenaphthylene	T1	AR	2	μg/kg	N	001-003
Acenaphthene	T1	AR	2	μg/kg	N	001-003
Fluorene	T1	AR	2	μg/kg	N	001-003
Phenanthrene	T1	AR	2	μg/kg	N	001-003
Anthracene	T1	AR	2	μg/kg	N	001-003
Fluoranthene	T1	AR	2	μg/kg	N	001-003
Pyrene	T1	AR	2	μg/kg	N	001-003
Benzo(a)Anthracene	T1	AR	2	μg/kg	N	001-003
Chrysene	T1	AR	2	μg/kg	N	001-003
Benzo(b/k)Fluoranthene	T1	AR	2	μg/kg	N	001-003
Benzo(a)Pyrene	T1	AR	2	μg/kg	N	001-003
Indeno(123-cd)Pyrene	T1	AR	2	μg/kg	N	001-003
Dibenzo(ah)Anthracene	T1	AR	2	μg/kg	N	001-003
Benzo(ghi)Perylene	T1	AR	2	μg/kg	N	001-003
PAH(total)	T1	AR	2	μg/kg	N	001-003

Concept Life Sciences is a trading name of Concept Life Sciences Analytical & Development Services Limited registered in England and Wales (No 2514788)

Concept Life Sciences Certificate of Analysis

16 Langlands Place Kelvin South Business Park East Kilbride G75 0YF Tel: 01355 573340

Tel: 01355 573340 Fax: 01355 573341

Report Number: 689661-1

Date of Report: 23-Oct-2017

Customer: Holequest

Winston Road Galashiels TD1 2DA

Customer Contact:

Customer Job Reference: 17/035 Customer Purchase Order: 17354

Customer Site Reference: UIG Harbour Redevelopment

Date Job Received at Concept: 14-Oct-2017

Date Analysis Started: 17-Oct-2017

Date Analysis Completed: 23-Oct-2017

The results reported relate to samples received in the laboratory and may not be representative of a whole batch.

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory

Tests covered by this certificate were conducted in accordance with Concept Life Sciences SOPs

All results have been reviewed in accordance with Section 25 of the Concept Life Sciences, Analytical Services Quality Manual

Report checked and authorised by :

Issued by:

Concept Reference: 689661

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Soil Analysed as Soil

Miscellaneous

			Concep	t Reference	689661 001	689661 002	689661 005	689661 006	689661 008
Customer Sample Reference				BH DS1 0.00-1.50M	BH DS1 4.50-6.00M	BH7 0.00-1.00M	BH7 1.00-2.50M	TP3 0.80M	
Date Sampled				Deviating	Deviating	Deviating	Deviating	Deviating	
Determinand	Method	Test Sample	LOD	Units					
Organic Matter	T2	A40	0.1	%	1.4	3.7	3.1	2.6	3.1

Concept Reference: 689661

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Soil Analysed as Soil

Miscellaneous

			Concep	t Reference	689661 009
		Custor	ner Sampl	e Reference	TP3 3.00M
			Da	ate Sampled	Deviating
Determinand	Method	Test Sample	LOD	Units	12
Organia Matter	TO	A 40	0.1	0/	2.0

Concept Reference: 689661

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Soil Analysed as Soil

Soil Suite

		232	4000					300.20%	
		90	Concep	t Reference	689661 001	689661 002	689661 003	689661 004	689661 005
		Custon	ner Sampl	e Reference	BH DS1 0.00-1.50M	BH DS1 4.50-6.00M	BH DS1 6.00-7.50M	BH DS1 7.50-9.00M	BH7 0.00-1.00M
		- 30	D	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
Determinand	Method	Test Sample	LOD	Units					
pН	T7	A40		192	9.2	8.4	9.5	8.9	8.3
(Acid Soluble) SO4	T192	AR	0.01	%	0.11	0.33	0.07	0.17	0.43
Sulphur (total)	T6	A40	0.01	%	0.08	1.2	0.11	0.31	0.81

Concept Reference: 689661

Project Site: UIG Harbour Redevelopment **Customer Reference:** 17/035

Soil Soil Suite

	689661 007				
		Custon	ner Sampl	e Reference	BH7 8.50-10.00M
	Deviating				
Determinand	Method	Test Sample	LOD	Units	
pН	T7	A40			9.6
(Acid Soluble) SO4	T192	AR	0.01	%	0.13
Sulphur (total)	T6	A40	0.01	%	0.91

Analysed as Soil

Concept Reference: 689661

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Leachate 2:1 Suite A Analysed as Water

		Concep	t Reference	689661 001	689661 002	689661 003	689661 004	689661 005	
		Custon	ner Sampl	e Reference	BH DS1 0.00-1.50M	BH DS1 4.50-6.00M	BH DS1 6.00-7.50M	BH DS1 7.50-9.00M	BH7 0.00-1.00M
			D	ate Sampled	Deviating	Deviating	Deviating	Deviating	Deviating
Determinand	reminand Method Test Sample LOD Units								
Ammonia expressed as NH4	T686	2:1	0.05	mg/l	<0.05	0.10	0.54	1.0	<0.05
Chloride	T686	2:1	1	mg/l	580	1700	340	1100	120
Magnesium	T82	2:1	1	mg/l	10	81	2	29	86
Nitrate	T686	2:1	0.5	mg/l	<0.5	<0.5	<0.5	<0.5	<0.5
Dissolved CO4/Total)	TOOF	0:1	10	ma/l	205	1064	200	EOE	1022

Concept Reference: 689661

Project Site: UIG Harbour Redevelopment

Customer Reference: 17/035

Leachate 2:1

Analysed as Water

5	It	ŀ	٩	

	Concept Reference						
		Custon	ner Sampl	e Reference	BH7 8.50-10.00M		
			D	ate Sampled	Deviating		
Determinand	Method	Test Sample	LOD	Units			
Ammonia expressed as NH4	T686	2:1	0.05	mg/l	<0.05		
Chloride	T686	2:1	1	mg/l	29		
Magnesium	T82	2:1	1	mg/l	<1		
Nitrate	T686	2:1	0.5	mg/l	<0.5		
Dissolved SO4(Total)	T285	2:1	10	mg/l	547		

Index to symbols used in 689661-1

Value	Description
A40	Assisted dried < 40C
2:1	Leachate 2:1
AR	As Received
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes

The date of sampling has not been provided and therefore the time from sampling to analysis is unknown. It is possible therefore that the results provided may be compromised.

Method Index

Value	Description
T2	Grav
T192	HCI Extraction/ICP/OES (TRL 447 T2)
T7	Probe
T686	Discrete Analyser
T6	ICP/OES
T285	ICP/OES (SIM) (Filtered)
T82	ICP/OES (Sim)

Accreditation Summary

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Organic Matter	T2	A40	0.1	%	N	001-002,005-006,008-009
pH	T7	A40			U	001-005,007
(Acid Soluble) SO4	T192	AR	0.01	%	N	001-005,007
Sulphur (total)	T6	A40	0.01	%	N	001-005,007

Determinand	Method	Test Sample	LOD	Units	Symbol	Concept References
Ammonia expressed as NH4	T686	2:1	0.05	mg/l	U	001-005,007
Chloride	T686	2:1	1	mg/l	U	001-005,007
Magnesium	T82	2:1	1	mg/l	N	001-005,007
Nitrate	T686	2:1	0.5	mg/l	U	001-005,007
Dissolved SO4(Total)	T285	2:1	10	mg/l	N	001-005,007

Appendix B Aspect Survey Vibro-Core Sampling and Testing Extract

Prepared for: The Highland Council

5. CONDUCT OF VIBROCORE SAMPLING

The vibrocore apparatus used was a lightweight SDI Vibecore 4D system with 76mm aluminium extruded pipe being used to recover the core. The system does not rely on overall mass but the vibrational frequency of the equipment and liquefaction of surrounding sediments to enable effective penetration. It is therefore reliant on the moisture content in the sediment.

The portability and simplicity of this equipment facilitates rapid deployment at an alternate location should the previous location provide a poor return.

The aim was to collect 3 cores in total across the site, of up to 3m in length, from sample points indicated on Figure 1.

The vessel was manoeuvred to each of the locations in turn and secured to the existing pier in order to avoid swinging during the sampling operation.

All vibrocore locations were sampled on 2nd & 3rd April 2018 at the following locations:

VIBROCORE POINT	SAMPLED EASTING	SAMPLED NORTHING	CORE LENGTH
VB3_3	138657.3	863558.7	2.1m
VB4_1	138778.8	863341.6	1.0m
VB5_2	138711.6	863549.2	1.4m

6. EQUIPMENT USED FOR SAMPLING

A Speciality Devices Incorporated D-4 vibrocorer was used for all samples. A 76mm diameter, 3m long core was fitted for all sample attempts and each core tube was constructed of aluminium.

The sediment was pushed out of the core tube prior to sampling the cores and then sampled with care being taken not to sample material that had come into contact with the sample tube wall.

A6542_Report of Survey Page | 5

FIGURE 2 - SDI D-4 VIBROCORER AND CORE ON DECK OF JOHANNA G

7. SAMPLE ANALYSIS

The laboratory analysis was carried out by SOCOTEC. The intention was that all vibrocore samples would be sub sampled at 0.5m intervals at the top middle and bottom of the length of the core and each sub sample analysed for Particle Size, Metals, WAC and Booster Biocides. The lab reporting is rendered with this report under separate cover:

A6542_Uig_Pre-disposal Sampling Results Form_MAR00025.xlsx

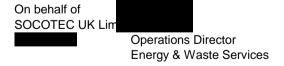
A6542_Report of Survey

TEST REPORT

Report No. EFS/184704 (Ver. 1)

SOCOTEC UK Limited Bretby (Marine)
Derwent House
Bretby Business Park
Ashby Road
Burton Upon Trent
Staffordshire
DE15 0YZ

Site: MAR00025


The 11 samples described in this report were registered for analysis by SOCOTEC UK Limited on 11-Apr-2018. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 30-Apr-2018

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 4)
Table of WAC Analysis Results (Pages 5 to 13)
Analytical and Deviating Sample Overview (Page 14)
Table of Additional Report Notes (Page 15)
Table of Method Descriptions (Page 16)
Table of Report Notes (Page 17)
Table of Sample Descriptions (Appendix A Page 1 of 1)

Date of Issue: 30-Apr-2018

Tests marked '^' have been subcontracted to another laboratory.

Where samples have been flagged as deviant on the Analytical and Deviating Sample Overview, for any reason, the data may not be representative of the sample at the point of sampling and the validity of the data may be affected.

SOCOTEC UK Limited accepts no responsibility for any sampling not carried out by our personnel.

		Units :	Mol/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg	%	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
		od Codes :	ANC	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA	BTEXHSA		BTEXHSA		PAHMSUS				PAHMSUS		PAHMSUS
	Method Reportii	ng Limits : ccredited :	0.04 No	10 Yes	10 Yes	20 Yes	20 Yes	10 Yes	10 Yes	30 Yes	0.2 No	0.08 Yes	0.08 Yes	0.08 Yes	0.08 Yes	0.08 Yes	0.08 Yes	0.08 Yes
LAB ID Number CL/	Client Sample Description	Sample Date	Acid Neut. Capacity	Benzene	Ethyl Benzene	m/p Xylenes	MTBE	o Xylene	Toluene	Xylenes	LO.I. % @ 450C	Acenaphthene	e ne			Benzo(b)fluoranthene	Benzo(ghi)perylene	
1900261	A6542 - 4_1_1	02-Apr-18	10.32	< 10.0 §	< 10.0* §	< 20.0* §	< 20.0 §	< 10.0 §	< 10.0 §	<30 §	3.7	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §
1900262	A6542 - 4_1_2	02-Apr-18	6.16	< 10.0 §	< 10.0* §	< 20.0* §	< 20.0 §	< 10.0 §	< 10.0 §	<30 §	3.9	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §
1900263	A6542 - 4_1_3	02-Apr-18	2.44	< 10.0 §	< 10.0* §	< 20.0* §	< 20.0 §	< 10.0 §	< 10.0 §	<30 §	3.6	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §
1900264	A6542 - 3_3_1	03-Apr-18	1.76	< 10.0 §	< 10.0* §	< 20.0* §	< 20.0 §	< 10.0 §	< 10.0 §	<30 §	11.0	< 0.08 §	< 0.08 §	< 0.08 §	0.15 §	0.17 §	0.18 §	0.10 §
1900265	A6542 - 3_3_2	03-Apr-18	1.24	< 10.0 §	< 10.0* §	< 20.0* §	< 20.0 §	< 10.0 §	< 10.0 §	<30 §	8.1	< 0.08 §	< 0.08 §	0.12 §	0.36 §	0.37 §	0.39 §	0.19 §
1900266	A6542 - 3_3_3	03-Apr-18	4.68	< 10.0 §	< 10.0* §	< 20.0* §	< 20.0 §	< 10.0 §	< 10.0 §	<30 §	3.3	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §
1900267	A6542 - 5_2_1	03-Apr-18	4.32	< 10.0 §	< 10.0* §	< 20.0* §	< 20.0 §	< 10.0 §	< 10.0 §	<30 §	9.1	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §
1900268	A6542 - 5_2_2	03-Apr-18	4.00	< 10.0 §	< 10.0* §	< 20.0* §	< 20.0 §	< 10.0 §	< 10.0 §	<30 §	7.3	< 0.08 §	< 0.08 §	< 0.08 §	0.85 §	0.87 §	1.28 §	0.36 §
1900269	A6542 - 5_2_3	03-Apr-18	4.00	< 10.0 §	< 10.0* §	< 20.0* §	< 20.0 §	< 10.0 §	< 10.0 §	<30 §	4.0	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §
1900271	QC Blank		<0.04	<10 §	<10 §	<20 §	<20 §	<10 §	<10 §	<30 §		< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §
1900272	Reference Material (% Recovery)		97	95 §	88 §	88 §	98 §	90 §	87 §	89 §	102	98 §	100 §	94 §	95 §	96 §	88 §	77 §
	Bretby Business Park, Ashby Road Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422		Client N Contact		SOCOT	EC UK L	imited Br		rine)			Report N	Sample Analysis Date Printed 27-Apr-2018 Report Number EFS/184704 Table Number 1					

Page 2 of 17

Where individual results are flagged see report notes for status.

EFS/184704 Ver. 1

		Units :	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	μg/kg	μg/kg	μg/kg	μg/kg	μg/kg
		d Codes :	PAHMSUS	PAHMSUS	PAHMSUS	PAHMSUS	PAHMSUS	PAHMSUS		PAHMSUS	PAHMSUS			PCBECD	PCBECD	PCBECD	PCBECD	PCBECD
	Method Reportii UKAS A	credited :	0.08 Yes	0.08 Yes	0.08 No	0.08 Yes	0.08 Yes	0.08 Yes	0.08 Yes	0.08 Yes	0.08 Yes	0.08 Yes	1.28 Yes	5 Yes	5 Yes	5 Yes	5 Yes	5 Yes
LAB ID Number CL/	Client Sample Description	Sample Date	Benzo(k)fluoranthene	Chrysene	Coronene	Dibenzo(ah)anthracene	Fluoranthene	Fluorene	Indeno(123-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH (Sum of USEPA 16)	PCB 101	PCB 118	PCB 138	PCB 153	PCB 180
1900261	A6542 - 4_1_1	02-Apr-18	< 0.08 §	< 0.08 §	< 0.08	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	1.28 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §
1900262	A6542 - 4_1_2	02-Apr-18	< 0.08 §	< 0.08 §	< 0.08	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	1.28 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §
1900263	A6542 - 4_1_3	02-Apr-18	< 0.08 §	< 0.08 §	< 0.08	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	1.28 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §
1900264	A6542 - 3_3_1	03-Apr-18	< 0.08 §	0.13 §	< 0.08	< 0.08 §	0.27 §	< 0.08 §	< 0.08 §	< 0.08 §	0.15 §	0.42 §	2.22 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §
1900265	A6542 - 3_3_2	03-Apr-18	0.18 §	0.29 §	< 0.08	< 0.08 §	0.62 §	< 0.08 §	0.20 §	< 0.08 §	0.29 §	0.59 §	4 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §
1900266	A6542 - 3_3_3	03-Apr-18	< 0.08 §	< 0.08 §	< 0.08	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	1.28 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §
1900267	A6542 - 5_2_1	03-Apr-18	< 0.08 §	< 0.08 §	< 0.08	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	1.28 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §
1900268	A6542 - 5_2_2	03-Apr-18	0.60 §	1.54 §	0.09	0.08 §	0.97 §	< 0.08 §	0.39 §	< 0.08 §	0.11 §	1.00 §	8.45 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §
1900269	A6542 - 5_2_3	03-Apr-18	< 0.08 §	< 0.08 §	< 0.08	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	1.28 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §	< 5.00 §
1900271	QC Blank		< 0.08 §	< 0.08 §	< 0.08	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 0.08 §	< 1.28 §	<5.00 §	<5.00 §	<5.00 §	<5.00 §	<5.00 §
1900272	Reference Material (% Recovery)		86 §	97 §	89	81 §	92 §	91 §	87 §	99 §	93 §	93 §	91 §	89 §	92 §	88 §	92 §	79 §
	SOCOTEC Bretby Business Park, Ashby Road		Client Na	ame	SOCOT	TEC UK L	imited Br	etby (Ma	rine)			Sample Analysis Date Printed 27-Apr-2018						
	Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422					MA	AR000	25				Report Number EFS/184704 Table Number 1						

Method Reporting Limits S S PHSOLL TMSS TPHFIDUS TPHFIDUS WSLM69 O.2			Units :	μg/kg	μg/kg	pH Units	%	mg/kg	mg/kg	% M/M							
Client Sample Description Client Sample Description				PCBECD	PCBECD	PHSOIL		TPHFIDUS	TPHFIDUS								
Client Sample Description Client Sample Description PCB 28 PCB 29 PCB 28 PCB 29 PCB 29		Method Reportii	ng Limits :			Voc											
1900261		UNAS A	ccreated.	162	162	162	165	165	165	165							
1900262 A6542 - 4_1_2		Client Sample Description	Sample Date	PCB 28	PCB 52	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon							
1900263 A6542 - 4_1_3	1900261	A6542 - 4_1_1	02-Apr-18	< 5.00 §	< 5.00 §	8.6 §		_	22.5 §	0.54 §							
1900264	1900262	A6542 - 4_1_2	02-Apr-18	< 5.00 §	_	8.6 §	24.5 §	10.6 §	12.0 §	0.42 §							
1900265 A6542 - 3_3_2 03-Apr-18 < 5.00 §	1900263	A6542 - 4_1_3	02-Apr-18	< 5.00 §	< 5.00 §	8.9 §	19.8 §	< 10.0 §	< 10.0 §	0.30 §							
1900266 A6542 - 3_3_3 03-Apr-18 < 5.00 §	1900264	A6542 - 3_3_1	03-Apr-18	< 5.00 §	< 5.00 §			1510 §	1510 §	_							
1900267 A6542 - 5_2_1 03-Apr-18 65.1 § < 5.00 §	1900265	A6542 - 3_3_2	03-Apr-18	< 5.00 §	< 5.00 §	8.4 §	51.5 §	629 §	630 §	2.61 §							
1900268 A6542 - 5_2_2 03-Apr-18 < 5.00 §	1900266	A6542 - 3_3_3	03-Apr-18	< 5.00 §	< 5.00 §	9 §	22.0 §	13.4 §	14.6 §	0.39 §							
1900269 A6542 - 5_2_3 03-Apr-18 < 5.00 §	1900267	A6542 - 5_2_1	03-Apr-18	65.1 §	< 5.00 §	8.4 §	40.6 §	126 §	127 §	2.11 §							
1900271 QC Blank <5.00 \ <5.00 \ <5.00 \ \ <10 \ <10 \ <0.02 \ \ <	1900268	A6542 - 5_2_2	03-Apr-18	< 5.00 §	< 5.00 §	8.2 §	34.8 §	174 §	175 §	1.63 §							
	1900269	A6542 - 5_2_3	03-Apr-18	< 5.00 §	< 5.00 §	8.8 §	29.6 §	10.6 §	12.0 §	0.74 §							
1900272 Reference Material (% Recovery) 82 § 93 § 98 § 93 § 93 § 112 §	1900271	QC Blank		<5.00 §	<5.00 §			<10 §	<10 §	<0.02 §							
	1900272	Reference Material (% Recovery)		82 §	93 §	98 §		93 §	93 §	112 §							
]	
SOCOTEC Client Name SOCOTEC UK Limited Bretby (Marine) Sample Analysis Contact		SOCOTEC (3)	Contact														
Bretby Business Park, Ashby Road Date Printed 27-Apr-2018		Bretby Business Park, Ashby Road											Date Printed 27-Apr-2018				
Burton-on-Trent, Staffordshire, DE15 0YZ Report Number EFS/184704		Burton-on-Trent, Staffordshire, DE15 0YZ					R.A.		25			Report Number EFS/184704					
Tel +44 (0) 1283 554400 MAR00025 Report Number EFS/184704 Table Number 1		Tel +44 (0) 1283 554400					IVIARUUU25						1				
Fax +44 (0) 1283 554422		Fax +44 (0) 1283 554422															

Page 4 of 17 Where individual results are flagged see report notes for status.

EFS/184704 Ver. 1

Client	SOCOTEC LIK Limi	tad Brothy (Marine	<i>-</i>)		Leaching Data			
Cilent	SOCOTEC UK Limi	ted bretby (Marine	=)		Weight of sample (kg)	0.292		
Contact					Moisture content @ 105°C (% of Wet Weight)	25.3		
Contact				Equivalent Weight based on drying at 105°C (kg) 0.2				
Site	MAR00025			Volume of water required to carry out 2:1 stage (litres) 0.3				
Site	WAR00025				Fraction of sample above 4 mm %			
	Sample Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %			
ACE 40 4 4 4		s18 4704	CL/1900261	30-Apr-18	Volume to undertake analysis (2:1 Stage) (litres)	0.300		
	A6542 - 4_1_1		CL/ 1900261	30-Apr-18	Weight of Deionised water to carry out 8:1 stage (kg)	1.650		

_	40	-		Landfill W	aste Acceptance C	Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.542§	3	5	6
Ν	LOI450	Loss on Ignition (%)	3.7			10
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.0802	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.049	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	28.51§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.82	100		
Ν	PHSOIL	pH (pH units)	8.6 §		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	10.36		To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	@ 2:1	Calculated cumulative amount leached @ 10:1		Acceptance Criteri 12457/3 @ L/S 10 mg/kg (dry we	· ·
Acc	Met		mg/l ex	ccept ⁰⁰	mg/kg (di	ry weight)			
U	WSLM3	pH (pH units) 00	7.5	8.9	Calculated data no	t UKAS Accredited			
U	WSLM2	Conductivity (µs/cm) 00	9590	2650	Calculated data no	orao accredited			
U	ICPMSW	Arsenic	0.008	0.003	0.016	0.04	0.5	2	25
U	ICPWATVAR	Barium	<0.01	<0.01	< 0.02	<0.1	20	100	300
U	ICPMSW	Cadmium	< 0.0001	< 0.0001	< 0.0002	< 0.001	0.04	1	5
U	ICPMSW	Chromium	<0.001	0.002	< 0.002	< 0.02	0.5	10	70
U	ICPMSW	Copper	0.003	0.002	0.006	0.02	2	50	100
U	ICPMSW	Mercury	<0.0001	< 0.0001	< 0.0002	< 0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.101	0.163	0.202	1.55	0.5	10	30
U	ICPMSW	Nickel	0.002	0.001	0.004	0.01	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.001	< 0.002	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.003	0.003	0.006	0.03	0.06	0.7	5
U	ICPMSW	Selenium	< 0.001	0.003	< 0.002	< 0.03	0.1	0.5	7
U	ICPMSW	Zinc	< 0.002	< 0.002	< 0.004	< 0.02	4	50	200
U	KONENS	Chloride	2910	661	5820	9609	800	15000	25000
U	ISEF	Fluoride	1	1.3	2	13	10	150	500
U	ICPWATVAR	Sulphate as SO4	590	183	1180	2373	1000	20000	50000
N	WSLM27	Total Dissolved Solids	7480	2060	14960	27827	4000	60000	100000
U	SFAPI	Phenol Index	< 0.05	< 0.05	<0.1	<0.5	1		
N	WSLM13	Dissolved Organic Carbon	8.6	16	17.2	150	500	800	1000

Template Ver. 1

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009

Client	SOCOTEC UK Limited B	rothy (Marine	,)		Leaching Data			
Cilent	SOCOTEC OK Littlied B	relby (Marine))		Weight of sample (kg)			
Contact					Moisture content @ 105°C (% of Wet Weight)	24.5		
Comaci				Equivalent Weight based on drying at 105°C (kg) 0.22				
Site	MAR00025			Volume of water required to carry out 2:1 stage (litres)	0.334			
Site	WAR00025				Fraction of sample above 4 mm %			
Sa	ample Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %			
A6542 - 4 1 2		s18 4704	CL/1900262	30-Apr-18	Volume to undertake analysis (2:1 Stage) (litres)	0.300		
	A0542 - 4_1_2	\$10_4704	CL/ 1900262	30-Apr-16	Weight of Deionised water to carry out 8:1 stage (kg)	1.650		

Note: The >4mm fraction is crushed using a dis	sc mill
--	---------

	d)			Landfill W	aste Acceptance C	Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.426§	3	5	6
Ν	LOI450	Loss on Ignition (%)	4			10
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.0796	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.049	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	14.04§	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.80	100		
Ν	PHSOIL	pH (pH units)	8.6 §		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	6.25		To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	Calculated amount leached @ 2:1 mg/kg (di	Calculated cumulative amount leached @ 10:1	Landfill Waste <i>i</i>	Acceptance Criteri 12457/3 @ L/S 10 mg/kg (dry we	· ·
<i>\</i>	WSLM3	pH (pH units) ⁰⁰	7.6	7.8					
Ü	WSLM2	Conductivity (µs/cm) 00	11400	1330	Calculated data no	ot UKAS Accredited			
Ū	ICPMSW	Arsenic	0.009	0.019	0.018	0.18	0.5	2	25
U	ICPWATVAR	Barium	<0.01	<0.01	<0.02	<0.1	20	100	300
U	ICPMSW	Cadmium	<0.0001	< 0.0001	< 0.0002	< 0.001	0.04	1	5
U	ICPMSW	Chromium	< 0.001	< 0.001	< 0.002	<0.01	0.5	10	70
U	ICPMSW	Copper	< 0.001	< 0.001	< 0.002	<0.01	2	50	100
U	ICPMSW	Mercury	< 0.0001	< 0.0001	< 0.0002	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.274	0.038	0.548	0.69	0.5	10	30
U	ICPMSW	Nickel	0.003	<0.001	0.006	<0.01	0.4	10	40
U	ICPMSW	Lead	< 0.001	<0.001	< 0.002	<0.01	0.5	10	50
U	ICPMSW	Antimony	0.005	0.003	0.01	0.03	0.06	0.7	5
U	ICPMSW	Selenium	<0.001	0.001	<0.002	<0.01	0.1	0.5	7
U	ICPMSW	Zinc	0.005	<0.002	0.01	<0.02	4	50	200
U	KONENS	Chloride	3660	308	7320	7549	800	15000	25000
U	ISEF	Fluoride	1.1	0.7	2.2	8	10	150	500
U	ICPWATVAR	Sulphate as SO4	691	109	1382	1866	1000	20000	50000
Ν	WSLM27	Total Dissolved Solids	8900	1040	17800	20880	4000	60000	100000
U	SFAPI	Phenol Index	< 0.05	< 0.05	<0.1	<0.5	1		
Ν	WSLM13	Dissolved Organic Carbon	7.1	2.7	14.2	33	500	800	1000

Template Ver. 1

andfill Waste Acceptance Criteria limit values correct as of 11th March 2009

Client	SOCOTEC LIK Limit	ad Prothy (Marin	<u>, </u>	Leaching Data			
Cilent	SOCOTEC UK Limit	eu bretby (Marine	=)		Weight of sample (kg)	0.271	
Contact					Moisture content @ 105°C (% of Wet Weight)		
Contact				Equivalent Weight based on drying at 105°C (kg)	0.225		
Site	MAR00025			Volume of water required to carry out 2:1 stage (litres)			
Site	WAR00025				Fraction of sample above 4 mm %		
	Sample Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %		
	A6542 4 1 2	019 4704	CL/1900263	30-Apr-18	Volume to undertake analysis (2:1 Stage) (litres)	0.300	
A6542 - 4_1_3		518_4704	s18_4704 CL/1900263		Weight of Deionised water to carry out 8:1 stage (kg)	1.650	

Note: The >4mm fraction is crushed using a disc mill
--

_	4)	-		Landfill W	aste Acceptance (Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.301§	3	5	6
Ν	LOI450	Loss on Ignition (%)	3.6			10
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.0745	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.042	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	<12.47§	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.70	100		
N	PHSOIL	pH (pH units)	8.9 §		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	2.45		To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	Calculated amount leached @ 2:1 mg/kg (d	Calculated cumulative amount leached @ 10:1	Landfill Waste <i>i</i>	Acceptance Criteri 12457/3 @ L/S 10 mg/kg (dry we	· ·	
_										
U		pH (pH units) 00	8.1	8.7	Calculated data no	ot UKAS Accredited				
U	WSLM2	Conductivity (µs/cm) 00	7620	992		1		_	0.5	
U	ICPMSW	Arsenic	0.022	0.031	0.044	0.3	0.5	2	25	
U	ICPWATVAR		<0.01	<0.01	<0.02	<0.1	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	<0.001	<0.002	<0.01	0.5	10	70	
U	ICPMSW	Copper	<0.001	0.001	< 0.002	<0.01	2	50	100	
U	ICPMSW	Mercury	< 0.0001	< 0.0001	< 0.0002	< 0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.039	0.01	0.078	0.14	0.5	10	30	
U	ICPMSW	Nickel	0.003	0.001	0.006	0.01	0.4	10	40	
U	ICPMSW	Lead	< 0.001	< 0.001	< 0.002	< 0.01	0.5	10	50	
U	ICPMSW	Antimony	0.005	0.004	0.01	0.04	0.06	0.7	5	
U	ICPMSW	Selenium	< 0.001	0.001	< 0.002	< 0.01	0.1	0.5	7	
U	ICPMSW	Zinc	< 0.002	< 0.002	<0.004	< 0.02	4	50	200	
U	KONENS	Chloride	2320	217	4640	4974	800	15000	25000	
U	ISEF	Fluoride	1.1	0.6	2.2	7	10	150	500	
U	ICPWATVAR	Sulphate as SO4	394	127	788	1626	1000	20000	50000	
N	WSLM27	Total Dissolved Solids	5940	774	11880	14628	4000	60000	100000	
U	SFAPI	Phenol Index	< 0.05	< 0.05	<0.1	<0.5	1			
N	WSLM13	Dissolved Organic Carbon	3.9	1.9	7.8	22	500	800	1000	

Template Ver. 1

andfill Waste Acceptance Criteria limit values correct as of 11th March 200

Client	SOCOTEC UK Limited B	rothy (Marine	,)		Leaching Data			
Ciletit	30COTEC ON LITTILED B	relby (Marine))	Weight of sample (kg)				
Contact					Moisture content @ 105°C (% of Wet Weight)			
Contact					Equivalent Weight based on drying at 105°C (kg) 0.22			
Site	MAR00025			Volume of water required to carry out 2:1 stage (litres)				
Site	WAR00025				Fraction of sample above 4 mm %			
Sa	ample Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %			
	10540 0 0 4		s18 4704 CL/1900264		Volume to undertake analysis (2:1 Stage) (litres)	0.300		
	A6542 - 3_3_1	s18_4704	CL/1900264	30-Apr-18	Weight of Deionised water to carry out 8:1 stage (kg)	1.650		

_	4)			Landfill Wa	aste Acceptance C	Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	3.745§	3	5	6
Ν	LOI450	Loss on Ignition (%)	11.7			10
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.1415	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.084	1		
Ν	TPHFIDUS	Mineral Oil (mg/kg)	3550§	500		
Ν	PAHMSUS	PAH Sum of 17 (mg/kg)	<5.4	100		
Ν	PHSOIL	pH (pH units)	7.9 §		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.87		To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	Calculated amount leached @ 2:1 mg/kg (di	Calculated cumulative amount leached @ 10:1	Landfill Waste /	Acceptance Criteri 12457/3 @ L/S 10 mg/kg (dry we	· ·	
U		pH (pH units) ⁰⁰	8.7	8.6						
Ü	WSLM2	Conductivity (µs/cm) 00	7270	2970	Calculated data no	ot UKAS Accredited				
Ü	ICPMSW	Arsenic	0.081	0.004	0.162	0.14	0.5	2	25	
Ū	ICPWATVAR		<0.01	<0.01	<0.02	<0.1	20	100	300	
U	ICPMSW	Cadmium	<0.0001	<0.0001	<0.0002	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	0.001	<0.002	<0.01	0.5	10	70	
U	ICPMSW	Copper	< 0.001	0.001	< 0.002	<0.01	2	50	100	
U	ICPMSW	Mercury	< 0.0001	< 0.0001	< 0.0002	<0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.138	0.059	0.276	0.7	0.5	10	30	
U		Nickel	0.008	<0.001	0.016	<0.02	0.4	10	40	
U	ICPMSW	Lead	<0.001	<0.001	< 0.002	<0.01	0.5	10	50	
U	ICPMSW	Antimony	0.009	0.003	0.018	0.04	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	0.003	< 0.002	< 0.03	0.1	0.5	7	
U	ICPMSW	Zinc	< 0.002	< 0.002	< 0.004	< 0.02	4	50	200	
U	KONENS	Chloride	2300	774	4600	9775	800	15000	25000	
U	ISEF	Fluoride	1.8	1.4	3.6	15	10	150	500	
U	ICPWATVAR	Sulphate as SO4	926	134	1852	2396	1000	20000	50000	
N	WSLM27	Total Dissolved Solids	5670	2310	11340	27580	4000	60000	100000	
U	SFAPI	Phenol Index	< 0.05	0.05	<0.1	<0.5	1			
N	WSLM13	Dissolved Organic Carbon	6.8	16	13.6	148	500	800	1000	

Template Ver. 1

andfill Waste Acceptance Criteria limit values correct as of 11th March 200

Client	SOCOTEC LIK Limit	ad Prothy (Marin	2)	Leaching Data		
Cilent	SOCOTEC UK Limit	ed bretby (Marin	⇒)		Weight of sample (kg)	0.278
Contact					Moisture content @ 105°C (% of Wet Weight)	
Contact				Equivalent Weight based on drying at 105°C (kg)	0.225	
Site	MAR00025			Volume of water required to carry out 2:1 stage (litres)		
Site	WAR00025				Fraction of sample above 4 mm %	
	Sample Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %	
	A6542 2 2 2	019 4704	s18 4704 CL/1900265		Volume to undertake analysis (2:1 Stage) (litres)	0.300
A6542 - 3_3_2		518_4704	s18_4704 CL/1900265		Weight of Deionised water to carry out 8:1 stage (kg)	1,650

Note: 11	ne >4mm n	action is	crusneu	using a	aisc iiiiii	

_	4)	-		Landfill W	aste Acceptance C	Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)		Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	3.263§	3	5	6
Ν	LOI450	Loss on Ignition (%)	10.1			10
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.1238	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.07	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	1300§	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<8.41	100		
N	PHSOIL	pH (pH units)	8.4 §		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	1.55		To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	Calculated amount leached @ 2:1	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values f 12457/3 @ L/S 10 litre kg-1 mg/kg (dry weight)		litre kg-1	
Ac	Ме		mg/r c/	СССР	ilig/kg (d	ly weight)				
U	WSLM3	pH (pH units) 00	8.4	9.2	Calculated data not UKAS Accredited					
U	WSLM2	Conductivity (µs/cm) 00	9040	1530	Calculated data ne	n or to 7 to or culted				
U	ICPMSW	Arsenic	0.004	0.005	0.008	0.05	0.5	2	25	
U	ICPWATVAR	Barium	<0.01	<0.01	< 0.02	<0.1	20	100	300	
U	ICPMSW	Cadmium	< 0.0001	< 0.0001	< 0.0002	<0.001	0.04	1	5	
U	ICPMSW	Chromium	<0.001	0.001	< 0.002	<0.01	0.5	10	70	
U	ICPMSW	Copper	<0.001	0.004	< 0.002	< 0.04	2	50	100	
U	ICPMSW	Mercury	<0.0001	< 0.0001	< 0.0002	<0.001	0.01	0.2	2	
U	ICPMSW	Molybdenum	0.18	0.08	0.36	0.93	0.5	10	30	
U	ICPMSW	Nickel	<0.001	0.003	< 0.002	< 0.03	0.4	10	40	
U	ICPMSW	Lead	< 0.001	< 0.001	< 0.002	<0.01	0.5	10	50	
U	ICPMSW	Antimony	0.004	0.004	0.008	0.04	0.06	0.7	5	
U	ICPMSW	Selenium	<0.001	0.001	< 0.002	<0.01	0.1	0.5	7	
U	ICPMSW	Zinc	< 0.002	0.003	< 0.004	< 0.03	4	50	200	
U	KONENS	Chloride	2880	363	5760	6986	800	15000	25000	
U	ISEF	Fluoride	1.4	0.8	2.8	9	10	150	500	
U	ICPWATVAR	Sulphate as SO4	242	352	484	3373	1000	20000	50000	
N	WSLM27	Total Dissolved Solids	7050	1200	14100	19800	4000	60000	100000	
U	SFAPI	Phenol Index	< 0.05	0.06	<0.1	<0.6	1			
N	WSLM13	Dissolved Organic Carbon	15	4.3	30	57	500	800	1000	

Landfill Waste Acceptance Criteria limit values correct as of 11th March 2009.

Client	SOCOTEC LIK Limit	ad Prathy (Marin	,)		Leaching Data		
Cilent	SOCOTEC UK Limit	ed bretby (Marine	=)	Weight of sample (kg)	0.288		
Contact					Moisture content @ 105°C (% of Wet Weight)	22.0	
Contact				Equivalent Weight based on drying at 105°C (kg)	0.225		
Site	MAR00025			Volume of water required to carry out 2:1 stage (litres)	0.387		
Site	WARUUU25			Fraction of sample above 4 mm %			
	Sample Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %		
	A6542 2 2 2	019 4704	CL/1000366	30-Apr-18	Volume to undertake analysis (2:1 Stage) (litres)	0.300	
1	A6542 - 3_3_3	518_4704	s18_4704 CL/1900266		Weight of Deionised water to carry out 8:1 stage (kg)	1.650	

Note:	HIL	>4111111	maction	15	crusneu	using	a uis	CHIIII	

	d)	•		Landfill W	aste Acceptance C	Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.400§	3	5	6
Ν	LOI450	Loss on Ignition (%)	3.4			10
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.0764	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.042	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	17.18§	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.74	100		
N	PHSOIL	pH (pH units)	9 §		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	4.81		To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	Calculated amount leached @ 2:1 mg/kg (di	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for 12457/3 @ L/S 10 litre kg-1 mg/kg (dry weight)		litre kg-1
_		nll/nll.usita\00	0	0.4					
U	WSLM3 WSLM2	pH (pH units) 00	8 22300	9.4 1200	Calculated data no	ot UKAS Accredited			
	ICPMSW	Conductivity (µs/cm) 00			0.036	1.37	0.5	2	25
U	ICPWATVAR	Arsenic	0.018 <0.01	0.155 <0.01	0.036 <0.02	<0.1	0.5 20	100	300
U	ICPMSW	Cadmium	<0.001	<0.01	<0.002	<0.01	0.04	100	5
	ICPMSW	Chromium	<0.0001	0.001	<0.002	<0.001		10	70
U	ICPMSW		<0.001	0.001	<0.002	<0.01	0.5 2	50	100
U		Copper							2
U		Mercury	<0.0001	<0.0001	<0.0002	<0.001	0.01	0.2	_
U		Molybdenum	0.064	0.036	0.128	0.4	0.5	10	30
U		Nickel	<0.001	0.011	<0.002	<0.1	0.4	10	40
U	ICPMSW	Lead	<0.001	<0.001	< 0.002	<0.01	0.5	10	50
U	ICPMSW	Antimony	< 0.001	0.004	< 0.002	< 0.04	0.06	0.7	5
U	ICPMSW	Selenium	< 0.001	0.002	< 0.002	< 0.02	0.1	0.5	7
U	ICPMSW	Zinc	< 0.002	< 0.002	< 0.004	< 0.02	4	50	200
U	KONENS	Chloride	8150	249	16300	13025	800	15000	25000
U	ISEF	Fluoride	1.1	1	2.2	10	10	150	500
U	ICPWATVAR	Sulphate as SO4	528	246	1056	2836	1000	20000	50000
N	WSLM27	Total Dissolved Solids	17400	935	34800	31303	4000	60000	100000
U	SFAPI	Phenol Index	< 0.05	< 0.05	<0.1	<0.5	1		
N	WSLM13	Dissolved Organic Carbon	11	5.4	22	61	500	800	1000

Client	SOCOTEC LIK Limit	ad Brothy (Marin	٠١		Leaching Data		
Cilent	SOCOTEC UK Limit	ed bretby (Marin	<i>=)</i>	Weight of sample (kg)	0.441		
Contact					Moisture content @ 105°C (% of Wet Weight)	40.6	
Contact				Equivalent Weight based on drying at 105°C (kg)	0.225		
Site	MAR00025			Volume of water required to carry out 2:1 stage (litres)	0.234		
Site	WARUUU25			Fraction of sample above 4 mm %			
	Sample Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %		
	A6542 5 2 1	s18 4704	CL/1900267	30-Apr-18	Volume to undertake analysis (2:1 Stage) (litres)	0.300	
	A6542 - 5_2_1	518_4704	CL/ 1900267	30-Apr-18	Weight of Deionised water to carry out 8:1 stage (kg)	1.650	

Note: 11	ne >4mm n	action is	crusneu	using a	aisc iiiiii	

	d)			Landfill W	aste Acceptance C	Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	2.182§	3	5	6
Ν	LOI450	Loss on Ignition (%)	9.4			10
U	BTEXHSA	Sum of BTEX (mg/kg)	<0.1014	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	<0.1576	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	212§	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<2.29	100		
N	PHSOIL	pH (pH units)	8.4 §		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	4.47		To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis		8:1 Leachate	Calculated amount leached @ 2:1 mg/kg (d	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for 12457/3 @ L/S 10 litre kg-1 mg/kg (dry weight)		litre kg-1
_	WSLM3	nH (nH unita) 00	8.1	8					
U	WSLM2	pH (pH units) ⁰⁰ Conductivity (µs/cm) ⁰⁰	22200	1230	Calculated data no	ot UKAS Accredited			
U	ICPMSW	Arsenic	0.011	0.013	0.022	0.13	0.5	2	25
11	ICPWATVAR		<0.01	<0.013	<0.022	<0.13	20	100	300
U	ICPMSW	Cadmium	<0.001	<0.001	<0.002	<0.001	0.04	100	5
U	ICPMSW	Chromium	<0.001	<0.001	<0.002	<0.001	0.5	10	70
Ü	ICPMSW	Copper	<0.001	0.003	<0.002	<0.03	2	50	100
U		Mercury	<0.0001	<0.0001	<0.002	<0.001	0.01	0.2	2
U	ICPMSW	Molybdenum	0.359	0.015	0.718	0.61	0.5	10	30
U	ICPMSW	Nickel	<0.001	<0.001	<0.002	<0.01	0.4	10	40
Ü	ICPMSW	Lead	<0.001	<0.001	<0.002	<0.01	0.5	10	50
Ü	ICPMSW	Antimony	0.001	0.002	0.002	0.02	0.06	0.7	5
Ü	ICPMSW	Selenium	<0.001	0.001	<0.002	<0.01	0.1	0.5	7
Ü	ICPMSW	Zinc	<0.002	<0.002	<0.004	<0.02	4	50	200
Ü	KONENS	Chloride	8350	274	16700	13508	800	15000	25000
Ū	ISEF	Fluoride	0.9	0.7	1.8	7	10	150	500
Ū	ICPWATVAR	Sulphate as SO4	499	89	998	1437	1000	20000	50000
N	WSLM27	Total Dissolved Solids	17300	959	34600	31378	4000	60000	100000
U	SFAPI	Phenol Index	0.16	< 0.05	0.32	<0.6	1		
N	WSLM13	Dissolved Organic Carbon	17	3.5	34	53	500	800	1000

Client	SOCOTEC UK Limited B	rothy (Marine	,)		Leaching Data		
Ciletit	SOCOTEC ON LITTILED B	relby (Marine))		Weight of sample (kg)		
Contact					Moisture content @ 105°C (% of Wet Weight)	34.8	
Comaci				Equivalent Weight based on drying at 105°C (kg)	0.225		
Site	MAR00025			Volume of water required to carry out 2:1 stage (litres) 0.2			
Site	WAR00025				Fraction of sample above 4 mm %		
Sa	imple Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %		
ACE40 E 0 0		s18 4704 CL/1900268		30-Apr-18	Volume to undertake analysis (2:1 Stage) (litres)	0.300	
	A6542 - 5_2_2	s18_4704	CL/1900200	30-Apr-16	Weight of Deionised water to carry out 8:1 stage (kg)	1.650	

_	4)	-		Landfill W	aste Acceptance (Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	1.648§	3	5	6
Ν	LOI450	Loss on Ignition (%)	7.4			10
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.0919	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.056	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	267§	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	13.1	100		
N	PHSOIL	pH (pH units)	8.2 §		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	4.04		To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis	2:1 Leachate 8:1 Leachate an		Calculated amount leached @ 2:1 mg/kg (di	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/3 @ L/S 10 litre kg-1 mg/kg (dry weight)						
<i>\</i>	WSLM3	pH (pH units) ⁰⁰	7.9	8.7									
Ü	WSLM2	Conductivity (µs/cm) 00	17300	2380	Calculated data no	ot UKAS Accredited							
Ū	ICPMSW	Arsenic	0.018	0.007	0.036	0.08	0.5	2	25				
U	ICPWATVAR	Barium	<0.01	<0.01	<0.02	<0.1	20	100	300				
U	ICPMSW	Cadmium	<0.0001	< 0.0001	<0.0002 <0.001		0.04	1	5				
U	ICPMSW	Chromium	< 0.001	0.001	<0.002	<0.01	0.5	10	70				
U	ICPMSW	Copper	< 0.001	< 0.001	< 0.002	<0.01	2	50	100				
U	ICPMSW	Mercury	< 0.0001	< 0.0001	< 0.0002	<0.001	0.01	0.2	2				
U	ICPMSW	Molybdenum	0.206	0.106	0.412	1.19	0.5	10	30				
U	ICPMSW	Nickel	<0.001	0.003	< 0.002	< 0.03	0.4	10	40				
U	ICPMSW	Lead	<0.001	<0.001	< 0.002	<0.01	0.5	10	50				
U	ICPMSW	Antimony	0.004	0.005	0.008	0.05	0.06	0.7	5				
U	ICPMSW	Selenium	<0.001	0.002	<0.002	<0.02	0.1	0.5	7				
U	ICPMSW	Zinc	< 0.002	<0.002	<0.004	<0.02	4	50	200				
U	KONENS	Chloride	6150	602	12300	13417	800	15000	25000				
U	ISEF	Fluoride	1.1	1.4	2.2	14	10	150	500				
U	ICPWATVAR	Sulphate as SO4	815	320	1630	3860	1000	20000	50000				
Ν	WSLM27	Total Dissolved Solids	13500	1860	27000	34120	4000	60000	100000				
U	SFAPI	Phenol Index	< 0.05	< 0.05	<0.1	<0.5	1						
N	WSLM13	Dissolved Organic Carbon	8	9.9	16	96	500	800	1000				

Template Ver. 1

andfill Waste Acceptance Criteria limit values correct as of 11th March 200

Client	SOCOTEC LIK Limit	od Prothy (Marin	Leaching Data					
Cilent	SOCOTEC UK Limit	eu bretby (Marine	=)	Weight of sample (kg)	0.317			
Contact			Moisture content @ 105°C (% of Wet Weight)					
Contact				Equivalent Weight based on drying at 105°C (kg) 0.2				
Site	MAR00025				Volume of water required to carry out 2:1 stage (litres) 0.35			
Site	WAR00025				Fraction of sample above 4 mm %			
	Sample Description	Report No	Sample No	Issue Date	Fraction of non-crushable material %			
	A6542 5 2 2	019 4704	s18_4704 CL/1900269 30-Apr-18		Volume to undertake analysis (2:1 Stage) (litres)	0.300		
1	A6542 - 5_2_3	518_4704			Weight of Deionised water to carry out 8:1 stage (kg)	1,650		

Note: The >4mm fraction is crushed using a dis	sc mill
--	---------

_	4)	-		Landfill W	aste Acceptance C	Criteria Limit Values
Accreditation	Method Code	Solid Waste Analysis (Dry Basis)	Concentration in Solid (Dry Weight Basis)	Inert Waste Landfill	Stable Non- reactive Hazardous Waste in Non- Hazardous Landfill	Hazardous Waste Landfill
Ν	WSLM59	Total Organic Carbon (% M/M)	0.755§	3	5	6
Ν	LOI450	Loss on Ignition (%)	4.1			10
U	BTEXHSA	Sum of BTEX (mg/kg)	< 0.0856	6		
U	PCBUSECD	Sum of 7 Congener PCB's (mg/kg)	< 0.049	1		
N	TPHFIDUS	Mineral Oil (mg/kg)	15.06§	500		
N	PAHMSUS	PAH Sum of 17 (mg/kg)	<1.93	100		
N	PHSOIL	pH (pH units)	8.8 §		>6	
N	ANC	Acid Neutralisation Capacity (mol/kg) @pH 7	4.08		To be evaluated	To be evaluated

Accreditation	Method Code	Leachate Analysis			Calculated amount leached @ 2:1 mg/kg (di	Calculated cumulative amount leached @ 10:1	Landfill Waste Acceptance Criteria Limit Values for BSEN 12457/3 @ L/S 10 litre kg-1 mg/kg (dry weight)						
		nll (nll unita) 00	8.6	9.1									
U	WSLM3 WSLM2	pH (pH units) ⁰⁰ Conductivity (µs/cm) ⁰⁰	11100	1630	Calculated data no	ot UKAS Accredited							
U	ICPMSW	Arsenic	0.181	0.174	0.362	1.75	0.5	2	25				
- 11	ICPWATVAR		<0.01	<0.01	<0.02	<0.1	20	100	300				
U	ICPMSW	Cadmium	<0.001	<0.001	<0.002 <0.001		0.04	100	5				
U	ICPMSW	Chromium	<0.001	0.003	<0.002	<0.001	0.04	10	70				
U	ICPMSW	Copper	<0.001	0.003	<0.002 <0.03		2	50	100				
U		Mercury	<0.001	<0.0001	<0.002	<0.001	0.01	0.2	2				
U		Molybdenum	0.522	0.183	1.044	2.28	0.5	10	30				
U		Nickel	0.006	0.103	0.012	0.24	0.4	10	40				
U	ICPMSW	Lead	<0.001	<0.001	<0.002	<0.01	0.5	10	50				
U	ICPMSW	Antimony	0.045	0.018	0.002	0.22	0.06	0.7	5				
U	ICPMSW	Selenium	<0.001	0.005	<0.002	<0.04	0.00	0.7	7				
U	ICPMSW	Zinc	<0.001	<0.003	<0.002	<0.02	4	50	200				
U	KONENS	Chloride	3540	378	7080	7996	800	15000	25000				
U	ISEF	Fluoride	0.8	0.7	1.6	7990	10	150	500				
U		Sulphate as SO4	724	916	1448	1.0		20000	50000				
N	WSLM27	Total Dissolved Solids	8640	1270	17280	22527	1000 4000	60000	100000				
U	SFAPI	Phenol Index	<0.05	< 0.05	<0.1	<0.5	1	00000	100000				
N	WSLM13	Dissolved Organic Carbon	12	12	24	120	500	800	1000				

Template Ver. 1

andfill Waste Acceptance Criteria limit values correct as of 11th March 2009

Site

Report No

SOCOTEC UK Ltd Environmental Chemistry Analytical and Deviating Sample Overview

Customer SOCOTEC UK Limited Bretby (Marine)

MAR00025 S184704 Consignment No S73786
Date Logged 11-Apr-2018

In-House Report Due 25-Apr-2018

Please note the results for any subcontracted analysis (identified with a '^') is likely to take up to an additional five working days.

	suits for any subcontracted analy	MethodID	ANC	BTEXHSA	•	CEN Leachate		CustServ	ICPMSS					,			LOI(%MM)	PAHMSUS	PCBECD	PHSOIL	TMSS	TPHFIDUS		WSLM59
ID Number	Description	Sampled	Acid Neut. Capacity	BTEX-HSA + MTBE analysis	MTBE (µg/kg)	CEN Leac(P)1	CEN Leac(P)2	Report B >63 μm	Copper (MS) Sediment	Arsenic (MS) Sediments	Cadmium (MS) Sediments	Chromium (MS) Sediments	Lead (MS) Sediments	Mercury (MS) Low Level Sediments	Nickel (MS) Sediments	Zinc (MS) Sediments	L.O.I. % @ 450C	PAH (17) by GCMS	PCB-7 Congeners Analysis	pH units (AR)	Tot.Moisture @ 105C	TPH Band (>C10-C40)	TPH by GCFID (AR)	Total Organic Carbon
				✓	✓				✓	\	✓	✓	✓		✓	✓		\	✓	✓	✓	✓	✓	✓
CL/1900261	A6542 - 4_1_1	02/04/18																						
CL/1900262	A6542 - 4_1_2	02/04/18																						
CL/1900263	A6542 - 4_1_3	02/04/18																						
CL/1900264	A6542 - 3_3_1	03/04/18																						
CL/1900265	A6542 - 3_3_2	03/04/18																						
CL/1900266	A6542 - 3_3_3	03/04/18																						
CL/1900267	A6542 - 5_2_1	03/04/18																						
CL/1900268	A6542 - 5_2_2	03/04/18																						
CL/1900269	A6542 - 5_2_3	03/04/18																						
CL/1900271	QC Blank																							
CL/1900272	Reference Material (% Recover	y)																						

Note: We will endeavour to prioritise samples to complete analysis within holding time; however any delay could result in samples becoming deviant whilst being processed in the laboratory.

If sampling dates are missing or matrices unclassified then results will not be ISO 17025 accredited. Please contact us as soon as possible to provide missing information in order to reinstate accreditation.

Deviating Sample Key

- A The sample was received in an inappropriate container for this analysis
 - The sample was received without the correct preservation for this analysis
- C Headspace present in the sample container
- The sampling date was not supplied so holding time may be compromised applicable to all analysis
- E Sample processing did not commence within the appropriate holding time
- F Sample processing did not commence within the appropriate handling time

Requested Analysis Key

- Analysis Required
- Analysis dependant upon trigger result Note: due date may be affected if triggered
- No analysis scheduled
- Analysis Subcontracted Note: due date may vary

Report Number : EFS/184704

Additional Report Notes

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
BTEXHSA	CL1900261 TO CL1900269	The Primary process control data associated with this Test has not wholly met the requirements of the Laboratory Quality Management System QMS with one or more target analytes falling outside acceptable limits. However the remaining data gives the Laboratory confidence that the test has performed satisfactorily and that the validity of the data may not have been significantly affected. However in line with our QMS policy we have removed accreditation from the affected analytes (Ethylbenzene, M/P xylenes) . These circumstances should be taken into consideration when utilising the data"

Report Number: EFS/184704

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	ANC	Oven Dried	Quantitative digestion with Hydrochloric Acid back titration with 1M
		@ < 35°C	Sodium Hydroxide to pH 7
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	ICPMSS	Oven Dried @ < 35°C	Determination of Metals in Marine Sediments and Soil samples by aqua regia digestion followed by ICPMS detection
Soil	LOI(%MM)	Oven Dried @ < 35°C	Determination of loss on ignition for soil samples at specified temperature by gravimetry
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBECD	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis (% based upon wet weight)
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	WSLM59	Oven Dried @ < 35°C	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using ICPMS
Water	ICPWATVAR	As Received	Direct determination of Metals and Sulphate in water samples using ICPOES
Water	ISEF	As Received	Determination of Fluoride in water samples by Ion Selective Electrode (ISE)
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM13	As Received	Instrumental analysis using acid/persulphate digestion and non- dispersive IR detection
Water	WSLM2	As Received	Determination of the Electrical Conductivity (µS/cm) by electrical conductivity probe.
Water	WSLM27	As Received	Gravimetric Determination
Water	WSLM3		Determination of the pH of water samples by pH probe

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.

 All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity.
- Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l

Nil: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/l

Asbestos Analysis

CH Denotes Chrysotile
CR Denotes Crocidolite
AM Denotes Amosite
TR Denotes Tremolite
AC Denotes Actinolite
AN Denotes Anthophylite

NAIIS No Asbestos Identified in Sample **NADIS** No Asbestos Detected In Sample

Symbol Reference

- ^ Sub-contracted analysis.
- \$\$ Unable to analyse due to the nature of the sample
- \P Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.

This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

- ¥ Results for guidance only due to possible interference
- & Blank corrected result
- I.S Insufficient sample to complete requested analysis
- I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

N.F No Flow

NS Information Not Supplied

Req Analysis requested, see attached sheets for results

P Raised detection limit due to nature of the sample

- * All accreditation has been removed by the laboratory for this result
- # MCERTS accreditation has been removed for this result

§ accreditation has been removed for this result as it is a non-accredited matrix

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Page 17 of 17 EFS/184704 Ver. 1

Sample Descriptions

Client : SOCOTEC UK Limited Bretby (Marine)

 Site :
 MAR00025

 Report Number :
 S18_4704

Note: major constituent in upper case

		Note: Irrajor constituent in upper case
Lab ID Number	Client ID	Description
CL/1900261	A6542 - 4_1_1	MARINE SEDIMENTS
CL/1900262	A6542 - 4_1_2	MARINE SEDIMENTS
CL/1900263	A6542 - 4_1_3 A6542 - 3_3_1	MARINE SEDIMENTS
OL /1900203	A0542 - 4_1_5	MARINE SEDIMENTS
CL/1900264	A0042 - 3_3_1	MIARINE SEDIMENTS
CL/1900265	A6542 - 3_3_2	MARINE SEDIMENTS
CL/1900266	A6542 - 3_3_3	MARINE SEDIMENTS
CL/1900267	A6542 - 5_2_1	MARINE SEDIMENTS
CL/1900267	A6542 - 5_2_1	
CL/1900268	A6542 - 5_2_2	MARINE SEDIMENTS
CL/1900269	A6542 - 5_2_3	MARINE SEDIMENTS
CL/1900271	QC Blank	QUALITY CONTROL SAMPLE
CL/1900272	Reference Material (% Recovery)	QUALITY CONTROL SAMPLE
CL/1900272	Reference Material (70 Recovery)	QUALITY CONTINUE CANNOT EL
	+	
	-	
	+	
	+	
	-	
	+	
	+	
	+	
	1	
	<u> </u>	

Appendix A Page 1 of 1 30/04/2018EFS/184704 Ver. 1

